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Abstract
Magnetic Particle Imaging (MPI) is an emerging imaging technique that utilizes the nonlinear response of super-
paramagnetic iron oxide nanoparticles to generate an image of their spatial distribution. To achieve high-quality
MPI images, it is crucial to suppress background noise. In this work, we propose a transformer-based masked
autoencoder for learning the relationships between harmonic components to improve noise suppression. Experi-
mental results demonstrate that the proposed method effectively reduces background noise across varying levels.

I. Introduction

The application of magnetic particle imaging (MPI) is
heavily reliant on the image quality, which in turn de-
pends on both the signal quality of the hardware system
and the reconstruction algorithm employed [1]. How-
ever, environmental factors and system-induced noise
can degrade the acquired signals, leading to a reduction
in image quality [2]. Noise manifests in various patterns,
and effectively suppressing different types of noise simul-
taneously remains a challenge due to their inherent ran-
domness and diversity. In previous work, we proposed
a self-attention-based method [3], which dealt with the
two-dimensional (2D) time-frequency spectrum [4] ob-
tained from short-time Fourier transform (STFT) of the
temporal signal to suppress varying levels of background
noise. In the current work, we introduce a transformer-
based masked autoencoder [5]. We pre-train the encoder
to learn the relationships between different harmonic
components using a set of simulated system matrices

(SMs), and then transfer this knowledge to the back-
ground noise suppression task. Our experimental results
show that the fine-tuned model performs more effec-
tively in suppressing background noise.

II. Method

II.I. Datasets

We generated a set of SMs corresponding to MPI sys-
tems with varying gradients and scan trajectories to serve
as our pre-training dataset. The field of view is fixed at
24×24, with 168 frequency components extracted, result-
ing in an SM size of 168×576. Simultaneously, we created
0-1 binary matrices of equal size to serve as mask matri-
ces. Additionally, phantom images containing numbers
and letters were used to represent the particle concen-
tration distribution. Field-free point scanning signals
were generated, followed by window function framing
and STFT to obtain time-frequency spectrums, replicat-
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Figure 1: Illustration of the transformer-based masked au-
toencoder and the transferring process to background signal
suppression task.

ing the process described in [3, 4]. Noise was added to
the temporal signals to generate noisy spectrums.

II.II. Network Structure

We pre-trained the model to learn harmonic relation-
ships by restoring randomly masked SMs. Based on the
Transformer architecture [5], we randomly set values
in the SM to zero and divided the SM into equal-sized,
non-overlapping patches. For both the encoder and de-
coder, we employed a series of standard Transformer
blocks. Mean squared error was used as the loss func-
tion during pre-training. After pre-training, the model
was fine-tuned for the spectrum denoising task, lever-
aging the learned harmonic knowledge to process the
harmonic data of the time-frequency spectrum. For the
decoder, we used BSS-TFNet [3], an end-to-end spec-
trum enhancement network for background noise sup-
pression. The pre-trained encoder replaced the feature
extraction module in BSS-TFNet. The hyperparameters
of the network were adjusted according to the size of the
spectrum, with Mean Absolute Error (MAE) as the loss
function during the fine-tuning phase.

III. Results

We validated our method on datasets with varying levels
of background noise and compared it with BSS-TFNet [3].
Both methods were trained using datasets with a signal-
to-interference ratio (SIR) of 5 dB and a signal-to-noise
ratio (SNR) of 10 dB, and were tested on higher noise lev-
els. Experimental results, shown in Table 1 as mean val-
ues ± standard deviations, reveal that the network with
pre-trained encoders consistently achieved the best per-
formance across all datasets. In contrast, models without
pre-trained encoders (direct) performed slightly worse,
indicating that pre-training with harmonic knowledge
enhances noise suppression. Additionally, the perfor-
mance degradation of BSS-TFNet can be attributed to
the limited training dataset, which hindered effective
harmonic feature extraction.

Table 1: Quantitative results of different networks.

Method Spectrum Am-
plitude

Reconstructed
Image

MAE (×10−3) Peak Signal-to-
Noise Ratio ↑

SIR=0 dB, SNR=10 dB
Input 35.70±11.72 11.09±1.54
BSS-TFNet 3.47±1.20 28.83±4.38
Direct 1.57±1.04 36.07±4.87
Pre-trained 1.12±0.66 38.88±4.32

SIR=5 dB, SNR=10 dB
Input 27.84±6.99 13.02±1.69
BSS-TFNet 1.49±0.46 35.95±3.62
Direct 0.88±0.30 40.53±3.89
Pre-trained 0 .67±0.24 43.08±4.49

SIR=5 dB, SNR=0 dB
Input 85.89±23.00 10.30±0.83
BSS-TFNet 3.62±1.43 30.72±3.80
Direct 2.31±0.94 31.90±4.05
Pre-trained 1.40±0.44 37.26±4.47

IV. Conclusions

We have introduced a deep learning-based approach for
enhancing MPI signals, where the encoder is pre-trained
on masked SMs to learn the relationships between dif-
ferent harmonics. The pre-trained encoder is then trans-
ferred to the background noise suppression task. Experi-
mental results demonstrate that the pre-trained model
improves noise suppression performance. Therefore,
our method can assist in obtaining high-quality MPI im-
ages, when combined with X-space reconstruction tech-
niques.
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