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Abstract
To date a system matrix has to be obtained through a tedious calibration measurement when employing a system
matrix-based reconstruction in magnetic particle imaging. This problem can be effectively addressed by model-
based reconstruction, which takes into account both particle and scanner parameters. In this study, we focus on
the scanner parameters and in particular on the fact that the fields of experimental systems are imperfect. For
experimental Lissajous-type data we show that the modeling error can be substantially reduced by about 18 % by
incorporating field imperfections in both the transmit and receive coils.

I. Introduction

In order to reconstruct an image in magnetic particle
imaging (MPI), either the x -space or the system ma-
trix (SM)-based reconstruction is used. In the latter case,
an SM is employed that contains information regarding
both the particle parameters and the scanner parame-
ters [1, 2]. The current state of the art for obtaining an
SM is a tedious calibration measurement, which has the
advantage of including all relevant information. How-
ever, the calibration process is time-consuming and has
to be repeated whenever there is a change of the used
particles, the scanning sequence or the scanner hard-
ware. One potential solution to this issue is to model
the SM. To date, the majority of research has focused
on modeling the dynamics of the particles, under the as-
sumption of ideal fields, yielding promising outcomes [3].
A further issue are the scanner parameters [1]. In some
MPI scanners, the fields of the transmit and receive coils
are often spatially non-ideal, especially off-center. While

the simulations of Maass et al. [3] are restricted to an
area with almost ideal fields, Bringout et al. [4] demon-
strated the influence of non-ideal magnetic fields for a
field-free-line imaging sequence on simulated data.

The purpose of this work is to account for field imper-
fections when modeling a 2D Lissajous-type SM. To this
end, we use data measured with a human head scanner
[5] and show that the modeling error can be significantly
reduced by incorporating measured non-ideal fields.

II. Methods and materials
The continuous system function ŝl ,k : R3 → C can be
defined for each spatial position r ∈R3, receive channel
l ∈N, and frequency index k ∈N0 as

ŝl ,k (r ) =−âl ,k p l (r )
µ0

T

∫ T

0

∂

∂ t
m̄ (H (r , t ))e −

2πi k t
T dt (1)

where µ0 denotes the permeability of vacuum and T the
period of the trajectory. The system function further
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Figure 1: Comparison of different SMs for three different fre-
quencies. For each frequency the corresponding ideal, non-
ideal, and measured SM are shown at the central xz -plane for
the x -receive channel. The errors to the measured SM at the
depicted frequencies are shown in the lower right corner.

consists of the analog filter kernel âl ,k ∈C of the receive
chain, the sensitivity-field profile p l : R3 → R3 of the
l -th receive coil, and the time derivative of the mean
magnetic moment m̄ :R3→R3, which depends on the
applied magnetic fields H :R3× [0, T ]→R3.

Non-ideal fields deform a 2D planar Lissajous field-
free-point trajectory in all three spatial directions. Hence,
we simulated the SM (non-ideal SM) on a 3D grid (140×
110×100mm) for the MPI scanner described in [5]with a
static selection field. The remaining scanner parameters
were selected in accordance with the aforementioned
MPI scanner. The fields (p l and H ) were measured and
calculated using spherical harmonics as described in [2,
6, 7]. The analog filter kernel (âl ,k ) was measured and
estimated as described in [2, 8].

In order to simulate the mean magnetic moment
(m̄ ), the equilibrium model that accounts for particle
anisotropy [3] with the particle parameters D = 23 nm
and K anis = 500 J m−3 was employed. The software pack-
age MNPDynamics.jl1 was used for the computation.

The same SM was modeled assuming ideal fields
(ideal SM). For quantification we used the normalized
root mean square error to the measured SM [5].

III. Results and discussion
Figure 1 shows exemplary images of the non-ideal SM
in comparison to the ideal and measured one for three

1https://github.com/MagneticParticleImaging/MNPDynamics.jl

frequencies 51.7 kHz (top), 103.5 kHz (middle), and
154.5 kHz (bottom). The depicted slice is the central xz -
plane. Notably, the non-ideal SM is in closer alignment
with the measured one, particularly in the outer regions.
Here the magnetic fields are less ideal and therefore the
ideal SM has a higher discrepancy. Considering the sig-
nificant frequencies of the x -receive channel, the mean
error for the ideal SM is 0.129 while it is 0.106 for the
non-ideal SM.

IV. Conclusion

We found that using measured magnetic fields to simu-
late the SM resulted in an improvement of about 18 % for
the specified MPI scanner [5]. This is an important step
towards model-based image reconstruction for scanners
with medium to large field imperfections and has the
potential to significantly reduce the calibration effort in
MPI.
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