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Abstract

Magnetic Particle Imaging commonly relies on the system matrix (SM) to reconstruct particle distributions, but noise
during acquisition limits both its resolution and image quality. Traditionally, noise reduction requires averaging
multiple measurements, which increases acquisition time. This paper presents a deep neural network trained
on simulated SMs and measured background noise, which effectively generalizes to real-world data. The model
recovers higher frequency components of the SM and serves as a general pre-processing step, enhancing image

reconstruction quality while reducing the need for extensive averaging, thus accelerating SM acquisition.

. Introduction

In Magnetic Particle Imaging (MPI) reconstruction, es-
timating the particle distribution represents a linear in-
verse problem. The integral kernel, defined by the scan-
ner and particle parameters, is referred to as the system
matrix (SM). While the SM can be modeled [1], it is usu-
ally measured by moving a small delta sample on a grid.

Noise in MPI systems is complex in nature [2] and lim-
its the resolution of the SM. [3]. To reduce noise, multiple
measurements are averaged which extends the acquisi-
tion time. The thresholded discrete cosine transform can
be employed to denoise SM frequency components [4].
Recently, deep neural networks (DNNs) have been pro-
posed to denoise measured MPI signals [5] and recon-
structions [6]. However, forming a training dataset is
challenging, as the ground truth (GT) is not available,
and the noise model cannot be precisely modeled.

In this paper, we train a DNN for SM denoising using
modeled SMs and measured background signals. The
model generalizes well to real data, improves image qual-
ity and allows for shortening the calibration time.
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Il. Methods and Materials

We consider a pre-clinical MPI system from Bruker (Et-
tlingen, Germany). Measurements were performed us-
ing a 2D Lissajous sequence with fluid perimag particles.
The SM was measured repeatedly 10 and 330 times.

We consider a 2D denoising problem of complex-
valued frequency components of the SM. A noise-free
SM is generated by solving the Fokker-Planck equation
for Néel rotation' and then split randomly into training
and test sets in a 9:1 ratio. To simulate noisy SMs, a long
sequence of background noise measurements is normal-
ized to zero mean, randomly sub-sampled, and reshaped
to match the dimensions of the SM. Both the noise and
the frequency components are scaled to their respective
maximum values, and the noise is randomly re-scaled to
simulate different SNRs.

We train a 17-layer bias-free DnCnn [7] model by min-
imizing the residual MSE with the Adam solver (learning

IThe implementation was taken from
https://github.com/IBIResearch/EquilibriumModelWithAnisotropy
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Figure 1: Frequency components of the SMs (a) with the corresponding reconstructions of the snake phantom (b). The rows
correspond to different SMs: with 10 averages, denoised after 10 averages, and 330 averages. The components correspond to

101, 103, 153, 176, 149 kHz.

rate: 3-107*, number of epochs: 10%). Complex-valued
components are considered as two-channel real images.
The trained model is then applied to the measured SM
with 10 averages.

To assess the impact of denoising, a snake phantom
measurement [1] (1000 averages) was pre-processsed
(SNR threshold: 1.5, background subtraction) and re-
constructed using the Kaczmarz method with Tikhonov
regularization (A = 0.3) and row-normalized SMs.

I1l. Results

Figure 1 shows denoising results for several components
of the measured SM with 10 averages. The components
are visually recovered compared to the SM with 330 aver-
ages. The reconstruction with the denoised SM demon-
strates improved contrast and the recovery of the upper
part of the snake. It also shows a minor blurring com-
pared to the reconstruction using the SM with 330 aver-
ages and amplifies an artifact in the lower left corner.

IV. Discussion and Conclusion

We demonstrated that a DNN trained on simulated data
can effectively generalize to measured SMs. The devel-
oped model serves as a general pre-processing step, en-
hancing the SNR for SMs with varying numbers of av-
erages. Our results highlight the model’s potential to
reduce the required number of averages in SM measure-
ments, with the primary impact being the recovery of
bias and contrast. Future research should extend the ap-
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proach to 3D SMs, which would require computationally
more efficient simulation models [1].
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