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Abstract
Magnetic particle imaging (MPI) reconstructs the spatial distribution of magnetic nanoparticles on a fixed grid, the
resolution of which is limited by the noise present in the system. This paper addresses the reconstruction problem
while integrating single-image super-resolution for concentration maps. We introduce Neural Implicit Representa-
tions (NIR) as an image prior, enabling arbitrary grid size sampling after training. Experimental results using a spiral
phantom measurement reveal that NIR-based reconstruction maintains image sharpness across diverse grid sizes,
surpassing the two-stage Kaczmarz-`2 reconstruction followed by bicubic up-sampling in preserving fine structural
details. This technique has a potential for high-resolution MPI imaging without relying on extensive datasets.

I. Introduction
Magnetic particle imaging (MPI) obtains spatial distri-
bution of magnetic nanoparticles excited with dynamic
magnetic field. The reconstruction problem is a linear
ill-posed inverse problem defined by the system matrix
(SM) and commonly solved using regularization in com-
bination with iterative solvers. Recently, neural networks
proved to have regularization effect in MPI reconstruc-
tion [1], an approach known as Deep Image Prior (DIP).

The SM is usually measured using a small delta sam-
ple on a fixed grid. The size of the sample is selected
based on the trade-off between SNR and resolution, the
latter of which is determined by the properties of the
nanoparticles and the magnetic field gradient. The reso-
lution of the resulting reconstructions can be improved
either by pre-processing SM [2] or post-reconstruction
image processing [3].

While the two problems can be addressed indepen-
dently, joint formulations are possible [4]. In this paper,
we employ Neural Implicit Representaions (NIRs) [5] as

a prior in the reconstruction problem which later allows
to improve the resolution of MPI reconstructions. Unlike
DIP which takes a fixed noise sample as an input, NIRs
map grid coordinates to a desired property and, once
optimized, allow arbitrary grid-sizes to be sampled.

II. Methods and materials
In this work, NIR is a fully-connected neural network
with periodic activation functions [6]mapping a vector
of normalized coordinates p to real-valued concentra-
tion values. In this setup, the reconstruction is done by
training the network

arg min
θ

||S Dϕθ (p )−u ||2, (1)

i.e. optimization of the network weights, where S ∈
CM×N is the SM, u ∈ CM are the measurements, D
is the down-sampling operator and ϕθ (p ) is the NIR
parametrized by θ . For each iteration, we randomly sam-
ple coordinates corresponding to one of the finer grids.
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Figure 1: (a)-(d) Reconstructions of the spiral phantom sampled at different grid sizes: 292 (native), 542, 792, 1042; (e) Dependence
of the spiral’s inner diameter on the number of training iterations.

E.g., having N = a×b , the grids represent s a×s b , where
s = 1, . . . , 5. We then apply average pooling with the cor-
responding kernel to align dimensions with the SM.

We conduct an experiment using a 2D measurement
of a spiral phantom. The SM has 29x 29 mm2 FOV with
native grid size of 29x 29. We subtract mean background
signal and select frequency in the range between 20 and
380 kHz with SNR larger than 1.5. The data is normalized
according to the `2 norm of the SM rows. An adopted
version of Kaczmraz method with `2 regularization is
run for 150 iterations with λ= 0.5 to reconstruct on the
native 29× 29 grid. We use bilinear interpolation as a
baseline method for resampling. The NIR is optimized
using Adam with learning rate 10−4 for 70K iterations.
The two methods are compared visually using finer grids.

III. Results
Figure 1(a-d) presents a comparison between NIR-based
reconstructions and interpolated Kaczmarz-`2 recon-
structions across various grid sizes. Unlike bicubic up-
sampling, the proposed method preserves the sharpness
of the reconstructions at all grid sizes, maintaining the
structural integrity of curved features.

Figure 1(e) highlights a notable characteristic of the
proposed method: as the number of training iterations
increases, the spiral becomes progressively thinner. Sim-
ilar to DIP, the proposed method requires early stopping
in the training process to prevent overfitting.

IV. Discussion and Conclusion
We proposed a novel reconstruction method based on
NIR that both regularizes the inverse problem and en-

ables sampling at arbitrary grid sizes. As training is con-
ducted per measurement, the approach does not rely
on large datasets. However, the method’s primary draw-
back lies in the number of hyper-parameters that require
tuning for each new measurement. Future work should
focus on evaluating the stability of the reconstruction
method across diverse measurements.
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