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Abstract
The multi-patch approach in magnetic particle imaging is used to capture large field of views. System-matrix-based
image reconstruction for this approach often considers a joint system of equations to minimize artifacts. Due to
the prohibitive size of this inverse problem, reconstructions rely on iterative algorithms that do not need to keep
the entire system matrix in memory. This work shows a graphical processing unit accelerated implementation of
a generalized multi-patch operator. The achieved runtime improvements allow for multi-patch reconstructions
using different optimization algorithms, which in turn allow for a flexible choice of regularization terms.

I. Introduction

An important area in the field of system-matrix-based
reconstruction for magnetic particle imaging (MPI) is
multi-patch reconstruction. In order to obtain large field
of views (FOV), the FOV is divided into smaller patches,
which are then scanned sequentially. The patches are
often considered as a joint problem of the linear system
of equations to avoid artifacts. Such a joint approach is
taken with the generalized multi-patch reconstruction
described in [1], which uses clusters of similar patches
and exploits the sparse nature of the system equations.

This joint multi-patch reconstruction approach is im-
plemented in the open-source Julia package MPIReco.jl
[2] with an efficient implementation for the Kaczmarz
algorithm with l2 regularization. A variety of different op-
timization algorithms and different regularization terms
have been investigated for single-patch MPI. However,
the problem size of multi-patch has been prohibitive in
both memory and runtime requirements. As such the
generalized approach with Kaczmarz and the approach
of [3] have been used in multi-patch MPI so far.

An important factor in runtime improvements is
graphics processing unit (GPU) acceleration, which has

been investigated for single-patch MPI [4]. Kaczmarz
has poor GPU performance due to data dependencies
that cannot be parallelized for one measurement. Un-
like, single-patch reconstructions, multi-patch cannot
make use of existing linear algebra functions of a GPU
back-end, but instead requires custom GPU functions.

In this work we present a GPU accelerated general-
ized multi-patch operator based on custom GPU ker-
nels. This operator was added to MPIReco.jl together
with general GPU acceleration support for different GPU
vendors, such as NVIDIA and AMD cards. The achieved
runtime improvements allow for usage of optimization
algorithms other than Kaczmarz such as conjugated gra-
dient applied to the normal equation (CGNR) while re-
taining comparable performance. These algorithms in
turn allow for a more flexible choice of regularization
terms.

II. Methods and materials

Iterative solvers often require the matrix-vector product
of an operator, as well as its adjoint. The forward and ad-
joint operation of the generalized multi-patch operator
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Figure 1: A multi-patch phantom was reconstructed using
Kaczmarz with 3 iterations as described in [1] and CGNR with
30 iterations on CPU and GPU. Subfigure A shows the runtime
of the forward and adjoint application of the operator on a CPU
and a GPU. Subfigure B shows the iteration-dependent runtime
of CGNR and Kaczmarz and the SSIM index of CGNR compared
with the final reconstruction of Kaczmarz.

are given by eq. (12) and (13) in [1].
To implement these equations an operator needs to

store system matrices and several mappings per patch.
These mappings translate a given row of the operator
to a patch and a system matrix row, as well as provide
sparse index mappings to elements of the matrix row and
measurement vector. This way sparsity along the rows of
the operator can be achieved. The same mappings can
be reused for the adjoint operation, where a column of
the adjoint operator refers to a row of a system matrix.

GPUs are programmed with functions that are called
kernels, which are executed in parallel on hundreds of
threads. Our custom kernels are implemented with the
Julia package KernelAbstractions.jl1, which allows one
to write kernels that can target different GPU backends.
Such custom kernels are able to access the appropriate
system matrices and mappings of our operator. The for-
ward operation can be parallelized along the rows with
groups of threads performing a parallel sparse dot prod-
uct. The adjoint operation features a data dependency,
as different threads may access the same result element.
However, as long as the element is updated in an atomic
manner, this can still be parallelized along the columns.

To investigate the runtime improvement we repli-
cated a reconstruction from [1]. All executions are re-
peated 20 times and we report the average runtime. We
use 9 system matrices for the reconstruction which we
map to 15 patches. We consider 1953 frequency com-

1https://github.com/JuliaGPU/KernelAbstractions.jl

ponents and a grid of 49×21×86, resulting in a sparse
operator of size 29295×88494. More measurement de-
tails can be found in [1].

To see the runtime improvements of the GPU kernels,
we apply both the forward and the adjoint individually.
We also perform reconstructions with the operator using
the Conjugate Gradient Normal Residual (CGNR) algo-
rithm with 30 iterations and compare its runtime and
SSIM index of the reconstructed image to the Kaczmarz
result from [1]which used 3 iterations.

III. Results and discussion

The results are shown in Figure 1. As can be seen in
subfigure A, the forward and adjoint operation could be
accelerated by roughly one order of magnitude. CGNR’s
GPU-accelerated reconstruction achieves a fourfold
speedup compared to Kaczmarz’s CPU reconstruction.

IV. Conclusion

In this work we have shown the GPU acceleration of a
generalized multi-patch operator. The speedup of the
operator is slightly offset by the slower convergence and
higher computational complexity of CGNR. Nonethe-
less, with GPU acceleration we can now consider dif-
ferent solvers with more complex regularization terms
with improved or comparable runtime to state-of-the-art
Kaczmarz based reconstructions.
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