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Abstract
MPI offers a promising alternative to fMRI for detecting changes in cerebral blood volume (CBV) during brain
activation, potentially enabling single-patient functional brain mapping. We assess our human-scale MPI brain
scanner by imaging anesthetized non-human primates, achieving continuous imaging with 5 s temporal and 7
mm spatial resolution. We successfully detect CBV modulations during alternating cycles of hypercapnia and
normocapnia, achieving a CNR of up to 7.9 following activations in the brain region.

I. Introduction

MPI [1] is well-suited for CBV-based neuroimaging, di-
rectly measuring superparamagnetic iron oxide nanopar-
ticle (SPION) concentrations. Blood-pool confinement
allows for a direct correlation with CBV [2] and poten-
tially enhances sensitivity compared to fMRI. In rat hy-
percapnia studies, functional MPI (fMPI) achieved a CBV
contrast-to-noise ratio (CNR) up to six times greater than
fMRI at 9.4T [3]. As human-scale MPI brian scanners
develop [4–8], the lack of a clinically approved SPION
tracer for MPI necessitates testing in non-human pri-
mates to explore clinical viability. This work presents
the first images and preliminary hypercapnia time-series
measurements of CBV changes in the primate brain us-
ing a human-capable MPI scanner [5].

II. Materials and Methods

Details of our human-capable MPI scanner can be found
in [5]. Our FFL rotates at 0.1 Hz, yielding a 5 s tempo-
ral resolution. The system has a 7 mm spatial resolution,
and a 65 ng Fe detection limit at SNR= 5 in a 5 s phantom
image. Images are formed using iradon reconstruction,
and smoothed to the native 7 mm resolution using a gaus-
sian kernel. We acquire images in a psuedo-continuous
manner, capturing 5 images followed by a 1 image pause.

After protocol approval from our Institution’s ani-
mal ethics committee insuring adherence to ARRIVE
guidelines, we studied an adult rhesus macaque weigh-
ing 7 kg over two sessions. Anesthesia was induced
with ketamine/xylazine and maintained using 1% isoflu-
rane after xylazine reversal. The NHP was placed on
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Figure 1: (a) Slice chosen for hypercapnia time series acquired
as a 5s image. (b) Percent change in pixel over time series,
with cubic order polynomial baseline subtracted. (c) CNR map
overlaid on average time series image for individual pixels.

a heated removable bed where they remained for the
duration of the experiment. Physiological monitoring
included blood pressure, pulse oximetry, respiration,
and end-tidal CO2. We slowly injected 10 mg Fe/kg
dextran/PEG-coated Synomag-D 70nm SPIONs (Micro-
mod, Germany, Lot # 18224104-01) followed by a saline
flush. Under hypercapnia, the macaque was venitlated
with 5% CO2,30% O2, (balance N2), while normocap-
nia used 30% O2, (balance N2).The experiment included
three cycles of alternating normocapnia and hypercap-
nia, each lasting 10 minutes, totaling 70 minutes.

III. Results
Figure 1a illustrates the slice chosen for the hypercapnia
time series acquired in a single 5s image. In our prelim-
inary analysis, we fit a generalized linear model (GLM)
with a cubic polynomial baseline and an exponentially
ramped binary activation function shown in Figure 1b.
We detected hypercapnia activation with a CNR of up to
7.9 within the brain region. CNR is computed as signal
change from hyper/normo capnia divided by the GLM
residual standard deviation. Finally, we construct a CNR
map overlaid on the average time series image by fitting
the GLM pixel-wise in Figure 1c.

IV. Discussion and conclusion
This study presents preliminary in-vivo brain imag-
ing measurements capturing hemodynamic changes in
the non-human primate brain under hypercapnia, the
first functional time series using MPI. We successfully
tracked CBV modulations with good contrast-to-noise ra-

tio (CNR) although further noise-source elimination and
processing enhancements could improve CNR and tem-
poral SNR. Additionally, MPI images benefit from coreg-
istration with MRI or other anatomical context, since the
spatial resolution (7 mm) is relatively low. Despite these
limitations, our findings represent a crucial step toward
using MPI for functional brain imaging and advancing
single-patient imaging in clinical neuroscience.
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