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Abstract

Image reconstruction in Magnetic Particle Imaging (MPI) typically requires a system matrix, obtained through a
time-consuming calibration process. To bypass this, various model-based approaches have been explored. Recent
work demonstrated successful reconstruction by adapting a Chebyshev approach with Tikhonov-regularized least
squares (LS) under an equilibrium model with anisotropy. In this study, we introduce an efficient evaluation of
the forward and adjoint operators for the anisotropy model, enabling the use of iterative solvers and alternative

regularization methods for image reconstruction.

. Introduction

Recently, an equilibrium model with anisotropy has been
proposed, which allows for accurate modeling of Lis-
sajous type MPI system matrices [1]. The reconstruction
problem under this model can be expressed for a single
receive coil as a two-fold problem [2], in which we have
to solve the following integral equations:

i = ax J éy)PPly) dy, (1a)
R3

e(y)=f cX)p” K(x,x—y)dx=:Ac(y),  (1b)
R3

where p € R? is the sensitivity vector, a; € C are
frequency-dependent coefficients, P,Ez) :R3® — C are func-
tions related to a tensor product of Chebyshev polynomi-
alsand K : R3xR3 — R3 is the anisotropy model spatially-
variant kernel.

An efficient approximation to ¢ is described in [2].
Thus, the remaining challenge is efficiently solving for
the concentration c, given ¢. Iterative solvers like FISTA
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or the Richardson-Lucy (RL) algorithm can be used for
this purpose, requiring evaluation of the operator (1b)
and its adjoint. However, under the anisotropy model
the spatially-variant kernel prevents using fast imple-
mentations such as the FFT, making the process slow. To
address this, [3] proposes a rank-p Karhunen-Loéve (KL)
approximation of the kernel:

p
R(u,x)=>" zi(u)ey(x), @)

k=1

allowing the operator (1b) and its adjoint to be approxi-
mated as a sum of convolutions and cross-correlations
respectively, with shift-invariant kernels:

which enable the use of the FFT to approximate (1b).
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Figure 1: Results of the reconstruction, on the same color scale for comparison. (a) Reconstruction via FISTA with L' regulariza-
tion. (b) Reconstruction via RL. (c) Runtime of the reconstructions in ms with respect to the rank. In blue is the runtime of FISTA
with the convolution matrix of the Direct Chebyshev Reconstruction (DCR) in [2]. In purple is the computation time for ¢. (d)
Change in consecutive reconstructions with respect to the rank, measured via the MSE.

Il. Methods and Materials

To test the reconstruction, we use the "UT" anisotropy
kernel type [4] in the first receive channel only. The re-
constructions shown in Figure 1 were created using mea-
surement data of a single point phantom. Details on the
data acquisition can be found in [1]. For reconstruction
with FISTA, the kernel is generated on a 41x41x21x21
grid to minimize artifacts. In contrast, RL requires the
same discretization for both variables, so the kernel is
generated on a21x21x21x21 grid. The imaginary part
of ¢ is removed prior to reconstruction. Negative values
of ¢ are clipped to zero for RL, as it only accepts positive
measurements. FISTA reconstruction produces negative
artifacts, which are clipped to zero as well. Both methods
support various regularization techniques, but only L*
regularization is used here in FISTA, with regularization
parameter A = 0.15 and 70 iterations. The reconstruction
with RL is performed in 30 iterations. All reconstruc-
tions are normalized to [0, 1] for a fair comparison with
heatmaps.

I1l. Results and discussion

As shown in Figure 1, a minimum rank one is sufficient
to provide a functional reconstruction in both FISTA and
RL. Increasing the rank slightly enhances the quality of
the reconstruction and reduces the artifacts for FISTA,
but increases them for RL. Further increases in rank have
minimal effect, as illustrated quantitatively in plot (d) in
Figure 1. That is because the eigenvalues corresponding
to the first few summands are significantly larger than
the rest and also account for nearly the entire sum of
eigenvalues (e.g., A; =1216.36, representing the 99.03%
of the total sum), hence the remaining terms in the ap-
proximation are virtually negligible.

As shown in Figure 1, the runtime is linear on the rank
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of the KL approximation used, and the reconstruction
with low ranks is faster than a naive iterative reconstruc-
tion using FISTA with the DCR convolution matrix, in the
same number of iterations and regularization.

IV. Discussion and Conclusion

A low-rank approximation of the anisotropy kernel is
accurate enough to perform image reconstruction.

This approach provides an efficient evaluation of
(1b), and enables efficient use of iterative solvers for im-
age reconstruction under the equilibrium model with
anisotropy, offering flexibility in terms of speed, image
quality, and regularization. Further developments can
be made to perform a joint reconstruction using the mea-
surements from both receive coils.
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