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Abstract
Image reconstruction in Magnetic Particle Imaging (MPI) typically requires a system matrix, obtained through a
time-consuming calibration process. To bypass this, various model-based approaches have been explored. Recent
work demonstrated successful reconstruction by adapting a Chebyshev approach with Tikhonov-regularized least
squares (LS) under an equilibrium model with anisotropy. In this study, we introduce an efficient evaluation of
the forward and adjoint operators for the anisotropy model, enabling the use of iterative solvers and alternative
regularization methods for image reconstruction.

I. Introduction
Recently, an equilibrium model with anisotropy has been
proposed, which allows for accurate modeling of Lis-
sajous type MPI system matrices [1]. The reconstruction
problem under this model can be expressed for a single
receive coil as a two-fold problem [2], in which we have
to solve the following integral equations:

ûk = ak

∫

R3

c̃ (y)P (2)k (y) dy, (1a)

c̃ (y) =

∫

R3

c (x)pT K
�

x, x−y
�

dx=: Ac (y), (1b)

where p ∈ R3 is the sensitivity vector, ak ∈ C are
frequency-dependent coefficients, P (2)k :R3→C are func-
tions related to a tensor product of Chebyshev polynomi-
als and K :R3×R3→R3 is the anisotropy model spatially-
variant kernel.

An efficient approximation to c̃ is described in [2].
Thus, the remaining challenge is efficiently solving for
the concentration c , given c̃ . Iterative solvers like FISTA

or the Richardson-Lucy (RL) algorithm can be used for
this purpose, requiring evaluation of the operator (1b)
and its adjoint. However, under the anisotropy model
the spatially-variant kernel prevents using fast imple-
mentations such as the FFT, making the process slow. To
address this, [3] proposes a rank-p Karhunen-Loéve (KL)
approximation of the kernel:

K̃ (u, x) =
p
∑

k=1

zk (u)ek (x), (2)

allowing the operator (1b) and its adjoint to be approxi-
mated as a sum of convolutions and cross-correlations
respectively, with shift-invariant kernels:

Ac (x)≈
p
∑

k=1

∫

R3

c (u)zk (u)ek (x-u) du, (3a)

A∗b (u)≈
p
∑

k=1

∫

R3

b (x)zk (u)ek (x−u) dx, (3b)

which enable the use of the FFT to approximate (1b).
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Figure 7. Reconstruction results for six different phantoms shown in the
individual columns. The first row shows a photo of the filled phantom. Rows
2 – 6 show the reconstruction results when using the measured system matrix
and the four differently modeled system matrices (FP, EQANIS, reduced
EQANIS, EQ).

FP model is that it is an explicit model and therefore does not
require the solution of a differential equation to evaluate it. As
a result, the evaluation of the EQANIS model is much faster. In
our experiments and with the fast series-based implementation
derived in this work, we observed a speedup of 2-3 orders of
magnitude. The speedup would be even higher if the accuracy
for solving the FP equation is increased, which depends non-
linearly on the accuracy. In addition, we observed that the
solver also depends on the shape of the applied fields as well
as the concrete particle core diameter, anisotropy constant, and
easy axis angle. Thus, it is difficult to predict how long the
solution will actually take. In contrast, the EQANIS model
requires an almost constant computation time and changes
only slightly because the Bessel functions require different
times for different input parameters.

When looking at the experimental 2D Lissajous data, we
observed that the EQANIS model can basically replace the
FP model, since the found effective particle parameters were
sufficiently small implying a sufficiently small approximation
error as discussed before. Note that this is likely to be caused
by a specific characteristic of 2D/3D Lissajous trajectories,
which constantly change the excitation angle and thus do
almost never excite along the easy axis direction (colinear
easy axis). In contrast, in case of a 1D excitation, the fluid
particles align their easy axis along the excitation direction
and in turn relaxation effects become visible for most particle
systems [58]. In those cases the EQANIS model alone would
not be suitable. However, one could combine it with the Debye
model, which is commonly used to model 1D MPI systems.
Note that in the present work we fit the transfer function

and thus already implicitly include the Debye model as it
is basically modeled by a convolution in time. For 2D/3D
Lissajous trajectories, the transfer function can only model
global relaxation, whereas one expects only local relaxation
happening when the FFP crosses the center of the FOV.

The model-based reconstruction results are much closer to
the calibration-based reconstruction results. This is remarkable
since they still were slightly worse in [29]. The reasons for
this can be manifold. First of all, we used a more fine-grained
parameter search since our computing hardware was much
faster and also the FP implementation got more efficient. But
one other important aspect is that we use a slightly improved
reconstruction scheme, by applying diagonal whitening before
reconstruction. This strongly increased the robustness of re-
construction and allowed us to completely mitigate a frequency
selection. This observation also raises the question of a clear
distinction between the influence of the background signal and
the particle model on image reconstruction.

One still open problem is the field of parameter iden-
tification. In this work we only use monodisperse particle
models with a single diameter and anisotropy. Improvements
can be expected by switching to the polydisperse setting
as we have done for non-aligned immobilized particles in
[31]. Here, the EQANIS model can play an important role
because a much larger parameter space can be covered in the
same amount of time. Furthermore, it is possible to calculate
analytical derivatives explicitly with respect to desired input
parameters, which provides the opportunity to further improve
the optimization process.

In addition to the EQANIS model, we also introduced a
reduced form, which allows us to express the entire imaging
operator as a product of a first operator containing certain
tensor products of Chebyshev polynomials and a second
operator containing a spatially varying convolution. The model
reduction is to limit the number of Chebyshev tensor product
basis functions to be included in each frequency components
to one in (25), which in turn allows for direct inversion of
the operator as outlined in [36]. We have found that the
approximation being made is in practice negligible, which
has been previously discussed in [57] and [36] for the EQ
model. Exploiting the reduced EQANIS model allows for
direct reconstruction, which was initially derived and shown
in [37]. We note that this would not be possible for the FP
model, which shows that the EQANIS model is not only faster
to evaluate but also has the advantage that it can be better
utilized during reconstruction. Compared to the EQ model,
which shares these properties, the EQANIS model is much
more accurate.

More recently, the Fourier neural operator (FNO) [32] has
been proposed as a neural network approach to solving the
FP equation. The FNO significantly accelerates the numerical
solution of the corresponding FP equation after training the
network. However, it still requires the generation of training
examples, which have to be generated using classical numer-
ical solvers, with all the associated limitations. Furthermore,
the numerical quality of the FNO has not yet been sufficiently
validated and its accuracy is therefore unclear. In addition,
unlike the EQANIS model, the FNO model does not provide
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Figure 1: Results of the reconstruction, on the same color scale for comparison. (a) Reconstruction via FISTA with L 1 regulariza-
tion. (b) Reconstruction via RL. (c) Runtime of the reconstructions in ms with respect to the rank. In blue is the runtime of FISTA
with the convolution matrix of the Direct Chebyshev Reconstruction (DCR) in [2]. In purple is the computation time for c̃ . (d)
Change in consecutive reconstructions with respect to the rank, measured via the MSE.

II. Methods and Materials
To test the reconstruction, we use the "UT" anisotropy
kernel type [4] in the first receive channel only. The re-
constructions shown in Figure 1 were created using mea-
surement data of a single point phantom. Details on the
data acquisition can be found in [1]. For reconstruction
with FISTA, the kernel is generated on a 41x 41x 21x 21
grid to minimize artifacts. In contrast, RL requires the
same discretization for both variables, so the kernel is
generated on a 21x 21x 21x 21 grid. The imaginary part
of c̃ is removed prior to reconstruction. Negative values
of c̃ are clipped to zero for RL, as it only accepts positive
measurements. FISTA reconstruction produces negative
artifacts, which are clipped to zero as well. Both methods
support various regularization techniques, but only L 1

regularization is used here in FISTA, with regularization
parameter λ= 0.15 and 70 iterations. The reconstruction
with RL is performed in 30 iterations. All reconstruc-
tions are normalized to [0,1] for a fair comparison with
heatmaps.

III. Results and discussion
As shown in Figure 1, a minimum rank one is sufficient
to provide a functional reconstruction in both FISTA and
RL. Increasing the rank slightly enhances the quality of
the reconstruction and reduces the artifacts for FISTA,
but increases them for RL. Further increases in rank have
minimal effect, as illustrated quantitatively in plot (d) in
Figure 1. That is because the eigenvalues corresponding
to the first few summands are significantly larger than
the rest and also account for nearly the entire sum of
eigenvalues (e.g., λ1 = 1216.36, representing the 99.03%
of the total sum), hence the remaining terms in the ap-
proximation are virtually negligible.

As shown in Figure 1, the runtime is linear on the rank

of the KL approximation used, and the reconstruction
with low ranks is faster than a naive iterative reconstruc-
tion using FISTA with the DCR convolution matrix, in the
same number of iterations and regularization.

IV. Discussion and Conclusion

A low-rank approximation of the anisotropy kernel is
accurate enough to perform image reconstruction.

This approach provides an efficient evaluation of
(1b), and enables efficient use of iterative solvers for im-
age reconstruction under the equilibrium model with
anisotropy, offering flexibility in terms of speed, image
quality, and regularization. Further developments can
be made to perform a joint reconstruction using the mea-
surements from both receive coils.
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