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Abstract
Accurate magnetic field knowledge is crucial for magnetic particle imaging, affecting performance estimation,
sequence generation, and reconstruction. Especially for non-linear field generators, such as those with built-in
soft iron, conventional field simulations, such as the finite element method, are computationally demanding. We
propose the use of neural networks to predict the coefficients of the spherical harmonic expansions of the fields
from the input currents, drastically speeding up current-to-field prediction.

I. Introduction

Magnetic fields are a crucial component of any magnetic
particle imaging (MPI) system. Precise knowledge of the
fields is inherently important for the entire imaging pro-
cess. While the Biot-Savart law efficiently determines the
fields for air-core coils, it is not sufficient for field gen-
erators with non-linear properties, such as those with
built-in soft iron. Typically, time-consuming finite el-
ement methods are used, where the calculation of the
magnetic field from the coil currents, which is the for-
ward problem, can take several minutes. However, the
operation of an MPI system requires the determination
of the currents needed to generate a given field. This
inverse problem is a computationally complex optimiza-
tion problem that can consequently take several hours
[1].

In this work, we leverage neural networks to accel-
erate the forward problem for a field generator consist-
ing of iron core coil arrays [2]. Unlike other works [3],
the network predicts coefficients of the field’s spherical
harmonic (SH) expansion such that the field inherently

satisfies the underlying Laplace equation component by
component [4] rather than an interpolative model based
on a grid of field measurements. Using this approach, a
discrete set of values output from the network represent
a continuous field progression. As a next step, this net-
work could then be used as a differentiable surrogate to
efficiently solve the inverse problem.

II. Methods and materials
The field generator comprises a total of 18 coils with
soft iron cores. These are organized into two arrays of
9 coils each, arranged in a 3 × 3 configuration, facing
each other [5]. In order to reduce the amount of training
data required, we limit ourselves here to the field gener-
ation of four coils (see highlighted ones in Figure 1). A
total of 9000 data samples were generated by comput-
ing fields with random input current combinations us-
ing the FEM software COMSOL1 with a non-overlapping
train/validation/test (7200/900/900) split.

1COMSOL Multiphysics v.6.0. www.comsol.com. COMSOL AB, Stock-
holm, Sweden, COMSOL Multiphysics
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currents ∈ R4 coefficients ∈ R3×49

Figure 1: Visualization of the experimental setup and the pro-
posed field estimation method. The upper part of the figure
shows one 3×3 coil array of the field generator. For visualiza-
tion purposes, only the four coils used for the field simulation
are shown. A sphere in front of the coils indicates the volume in
which the field was analyzed. The lower part shows the network
that uses the four coil currents to predict the series expansion
coefficients and thus determine the field in the sphere.

A spherical t -design, t = 12, is utilized to efficiently
calculate the SH coefficients [4]. To this end, the mag-
netic field is simulated at 86 points on a sphere with
45 mm radius. The resulting 49 coefficients for each com-
ponent of the field allow for a representation of the mag-
netic fields inside the sphere as a SH expansion with poly-
nomial degree 6. In our implementation, we used a feed
forward neural network with 10 hidden layers and 1024
nodes each to predict the coefficients. Each hidden layer
was followed by the LeakyReLU activation function with
a negative slope of 0.2. Using the mean squared error
(MSE) loss function, the network was then trained for 250
epochs until the validation loss stagnated. The ADAM op-
timizer was used with default parameters and a learning
rate of 0.001. Furthermore, whenever the loss plateaued
with respect to the validation set, i.e., the loss did not de-
crease for 10 epochs, the learning rate was halved. Lastly,
the input currents were normalized to the interval [−1, 1]
and for each parameter of the SH coefficients Z-score
normalization was performed where mean and standard
deviation were computed on the training set. The train-
ing was performed on an NVIDIA GTX 1080 Ti and took
around 8 min.

To evaluate the networks predictive capabilities, we
considered the relative mean absolute error over all co-
efficients. The error was not calculated relative to each

coefficient but with respect to the coefficient with the
largest magnitude for each degree of the corresponding
SH basis functions, since the field is mainly characterized
by them. Otherwise values near zero would dominate.

III. Results and discussion

Across the entire test set, the model was able to predict
the SH coefficients with a mean relative error of 0.3 %,
allowing for accurate field prediction. The fields fulfill
the Laplace equation component by component, but a
divergence-free field is not guaranteed and only stems
from the nature of the training data.

IV. Conclusion

The proposed method effectively captures the nonlinear
magnetization behavior of the system. For a given cur-
rent vector, the trained model closely approximates the
magnetic field, and its differentiability allows the inverse
problem to be solved via gradient descent [6]. Future
extensions could include all 18 coil currents and enforce
physical constraints, such as a divergence-free field, mak-
ing it an important tool for efficient MPI sequencing and
simply applicable to other field generators.
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