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Abstract
A while ago a direct reconstruction method for multi-dimensional MPI was proposed, which is based on weighting
frequency components of the measured voltage signals with Chebychev polynomials of second kind. The method
works fast but leads to reconstructions of convolved spatial distributions of magnetic nanoaparticles. In a previous
work we were able to show that using a neural network model to deconvolve these reconstructions leads to high-
quality images in the two-dimensional case. In this work, we take this approach one step further and demonstrate
that this also applies to three-dimensional data. Therefore, in this work, we apply a neural network model on a
simulated data set consisting of three-dimensional volumes containing blood vessel like structures. We show that
the proposed network produces high-quality deconvolution results and outperforms conventional methods on the
data set.

I. Introduction
The direct Chebychev reconstruction method (DCR)
from [1] relies on the system function in the Langevin
model of paramagnetism with Lissajous-type excitation
patterns. As it was shown before, in field-free point (FFP)
MPI the convolved distribution of nanoparticles can be
recovered by summing up tensor products of Chebychev
polynomials. In the three-dimensional case it can be
done according to [1, Eq. (37)]. In a second step, these re-
sults have to be rescaled and deconvolved. The rescaling
can be carried out pursuant to ([1, Eq. (35)]). For the de-
convolution, several methods were proposed. In [1] two
methods SLE-`1 and SLE-`2 proved to be suitable. In [2] a
neural network model was proposed for this step. In this
work, we apply a similar neural network model for the
first time on three-dimensional simulated data consist-
ing of volumes of simulated blood vessel-like structures
and compare it to the two methods from [1].

II. Methods and materials

The neural network model used in this work is derived
from [2] without attention gates and adapted to work
with three-dimensional data. The encoding path of the
model consists of convolution blocks with two convolu-
tion layers, each followed by batch normalization and a
ReLU activation function. The kernel size of each convo-
lution layer is 3×3×3 and a padding by one to maintain
the spatial dimension. In the first layer of each convolu-
tion block the number of feature maps is increased by
64, which leads to 512 feature maps overall at the end of
the encoding path.
Furthermore, the spatial dimension is downsampled by
max-pooling with a kernel size of 2×2×2 and stride of 2
after every convolution block. In the decoding path the
spatial dimension is then restored by transposed convo-
lution layers with an output padding of one and the same
kernel size and stride as the max pooling of the encoding
path. Furthermore, in the decoding path the number of
feature maps is reduced to one to fuse the output of the
decoding path with the output of a shortcut connection

10.18416/ijmpi.2025.2503055 © 2025 Infinite Science Publishing

https://orcid.org/0000-0001-8646-332
https://orcid.org/0000-0003-1427-9068
https://orcid.org/0000-0001-7422-147X
https://orcid.org/0000-0001-5718-577X
mailto:m.eulers@uni-luebeck.de
https://dx.doi.org/10.18416/ijmpi.2025.2503055
https://dx.doi.org/10.18416/ijmpi.2025.2503055


International Journal on Magnetic Particle Imaging 2

Table 1: The mean results of the U-Net model, SLE-`1, and
SLE-`2 deconvolution on the test dataset.

U-Net SLE-`1 SLE-`2

MAE 0.014 0.071 0.065
SSIM 0.98 0.62 0.69

(a)

(b) (c) (d)

Figure 1: An example slice of the x-y-plane of a volume at z =
15. (a) Ground truth volume of the test data set; (b) the solution
of SLE-`1; (c) SLE-`2; (d) deconvolution and the prediction of
the U-Net model.

to get the final prediction of the model.

II.I. Dataset
To train and test the proposed U-net model, an MPI-
scanner simulation was used to generate the required
data. The simulation was based on the Langevin model
of paramagnetism, excluding relaxation effects, with an
Lissajous-type excitation pattern with frequency ratios
fx / fy = 33/32 and fx / fz = 33/34. The temperature was
set to 293 K and a core size of the nanoparticles to 20 nm.
Using this setting, 15000 voltage signals were simulated
corresponding to 15000 different blood vessel-like struc-
tures within a 31× 31× 31 volume. From these signals,
15000×3 volumes of size 29×29×29 were reconstructed
using the DCR from [1]. For every signal, three volumes
are reconstructed with the DCR, one for each receive coil.
The data set then was split into a training set containing
10000×3 samples, a validation set containing 1000×3
samples and test set of 4000× 3 samples. The network
was trained via the Adam optimizer using a learning rate
of 10−4, which was decayed by 0.9 after every 20-th epoch
and the mean absolute error as the objective function.
The training lasted 146 epochs till no improvement of the
objective function was observed. To ensure the neural
network did not overfit the training data were randomly

divided into batches of 20 samples in every epoch. Fur-
thermore, the vessel images of the test data were gen-
erated with different parameter sets than the training
data to assess the generalization capability of the neural

network.

III. Results and discussion

We compared our neural network approach with two de-
convolution methods SLE-`1 and SLE-`2 from [1]. The
regularization parameter λ for SLE-`1 and SLE-`2 was
selected in order to obtain the lowest possible mean ab-
solute error (MAE) on the test data, which led to λ =
1.79 · 10−10 for SLE-`1 and λ = 7.16 for SLE-`2. As a sec-
ond error measure the structural similarity index (SSIM)
was calculated. The means of both error metrics for all
three methods are shown in Table 1. The U-Net model
achieves the best results out of all three methods. This is
also reflected in the visual quality of the reconstructions,
as it is shown in Fig. 1, which shows a slice of a volume
from the test data set and the corresponding reconstruc-
tions of SLE-`1, SLE-`2 and the U-Net model.

IV. Conclusion

In this work we present the deconvolution of recon-
structed three-dimensional volumes containing blood
vessel like structures. For this, the two deconvolution
methods from [1]were compared with our U-Net model,
which was derived from [2]. The U-Net was able to
achieve the best reconstruction results on a simulated
data set. However, further tests on real data and data
with noise are necessary to better assess the capabilities
of the proposed approach.
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