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Abstract
Multi-contrast magnetic particle imaging (MPI) reconstructs the signal from different tracer materials or environ-
ments, resulting in multi-channel images that enable temperature or viscosity quantification. Since the multi-
contrast problem is ill-posed, it is addressed by regularization methods that are commonly solved using the Kaczmarz
algorithm. Unlike the single-contrast MPI problem, the multi-contrast one requires a high number of iterations to
converge. Matrix compression techniques were already successfully used in single-contrast reconstruction and
matrix recovery applications as in compressed sensing. Our work proposes to use matrix compression to reduce
the reconstruction time needed to achieve good reconstruction quality in multi-contrast MPI.

I. Introduction

MPI is an emerging medical imaging technique that em-
ploys static and dynamic magnetic fields to enable sen-
sitive and fast imaging of magnetic nanoparticles [1].
Multi-contrast MPI enables separate reconstruction of
the signal from different tracer materials or environ-
ments, which results in multi-channel images presenting
different tracer or environment properties, such as tem-
perature [2], viscosity [3], or core size [4].

Multi-contrast MPI reconstruction is quite challeng-
ing due to the difficulty of correctly separating the signal
into the different channels. This commonly leads to a
high number of Kaczmarz iterations to obtain a good
channel separation. For instance, in [3, 4], up to 10 000
iterations were required. In MPI, matrix compression
techniques were introduced before for both reconstruc-
tion convergence improvement [5] and compressed sens-
ing applications [6] considering single-contrast only so
far. This work proposes the application of matrix com-
pression [5, 7] for multi-contrast problems to speed up
the convergence of reconstruction and reduce memory
consumption while maintaining the image quality.

II. Methods and materials

To apply matrix compression, a unitary basis transfor-
mation B is applied to the rows of the system matrix
S l , l = 1, ..., L . The transformed matrix S l BH is then spar-
sified by applying a threshold and only storing the non-
zero entries of the matrix. For multi-contrast MPI, the
compression threshold can be chosen individually for
each channel. Matrix compression technique is applied
to the multi-channel reconstruction as follows

�

S1BH ... S L BH
�





B c1
...

B cL



=u . (1)

The discrete cosine transform (DCT) is used as basis
transformation in this work. For thresholding, we con-
sider the row-wise approach discussed in [8].

Synthetic data derived from measured system matri-
ces of catheter tracking in a vessel with a stenosis sce-
nario is considered for evaluation. The following forward
model is used to create the simulated data
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Figure 1: The heatmap shows the NRMSD of the reconstruc-
tion results using matrix compression versus the reduction
factor for each channel system matrix.
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where S is the system matrix that consists of the mobi-
lized S1 and immobilized S2 system matrices acquired
for the two channels, u is the measurement vector, and n
is synthetic white Gaussian noise with variance 0.5. The
original phantoms used in the simulation are shown in
the first row of figure 2, where c1 and c2 are the stenosis
and catheter phantoms, respectively. More details on
the simulation method, the phantoms, and the system
matrices can be found in [9].

III. Results and discussion

Fig. 1 shows the heatmap of the NRMSD of the recon-
struction results using matrix compression versus the
reduction factor for each channel system matrix with the
original phantoms as a reference. The reduction factor
represents the percentage of the system matrix coeffi-
cients used for reconstruction, with 1.0 using the full ma-
trix. The heatmap generally shows that higher reduction
factors imply a better NRMSD, i.e. better reconstruction.
It is also shown that using a 0.25 reduction factor of both
system matrices, a satisfactory NRMSD is obtained. The
heatmap is not symmetric with the reduction factor of
S1 showing more impact on the NRMSD, which implies
that a lower reduction factor, namely 0.1, can be used for
S2 without significantly affecting the NRMSD.

Fig. 2 displays the reconstruction results of the previ-
ously introduced data with 1000 iterations of Kaczmarz
using the full system matrices in the first row, the com-
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Figure 2: The figure shows reconstruction results using the
full system matrices without matrix compression, the reduced
system matrices with matrix compression with the same num-
ber of coefficients per channel, and with different number of
coefficients per channel, respectively.

pressed system matrices with 250 coefficients for each,
and the compressed system matrices with 250 and 100
coefficients of S1 and S2, respectively, in the second row.
Comparing the reconstructions of the different system
matrices they all visually show a good quality, which
agrees with the NRMSD, where the NRMSD using the
full matrix is around 0.066, 25% of the full matrices is
0.070, and 17.5% of the matrices is 0.072. The use of
matrix compression reduces the reconstruction time by
almost a factor of 2 when using the same number of co-
efficients for both system matrices and by a factor of 2.6
when using a different number of coefficients for each
system matrix.

IV. Conclusion
This work confirms the feasibility of applying matrix com-
pression for multi-contrast MPI problems for the sake of
reducing the amount of data being used for reconstruc-
tion and as a result reducing the reconstruction time. It is
also shown in this work that the amount of compression
can be adapted for each channel in multi-contrast re-
constructions without significant loss of reconstruction
quality. At last, we would like to point out that though our
proof of principle is restricted to 2D experimental data,
the matrix compression can be applied in 3D imaging
scenarios and other basis transformations as well.
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