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Abstract
In magnetic particle imaging (MPI), achieving efficient and accurate solutions to forward models is crucial for
solving inverse problems. This work investigates the coupled Brownian and Néel relaxation mechanisms, which
leads to a convection-dominated Fokker-Planck equation on a higher-dimensional domain. We propose a joint
angular-temporal discretization of this partial differential equation (PDE) combined with a reduced basis method.
Preliminary numerical results on simplified models demonstrate the efficacy of our approach, indicating its potential
for broader applications in MPI.

I. Introduction
For MPI, there exist various models of different complexi-
ties for the forward problem. As described in [1], selecting
a physically accurate forward model is crucial to obtain
reliable results for the inverse problem in MPI. For this
reason, we study the coupled Brown-Néel model of [2].
As in [3], we obtain a Fokker-Planck equation, that is, a
convection-dominated PDE given by

∂t f =−divS2×S2 (b f −D∇S2×S2 f ) (1)

for the time-dependent probability density f of particle
and magnetization directions. This density is a function
of time and two variables on the unit sphere S2. The dif-
fusion tensor D is diagonal and the convection field b is
determined by the magnetic field, the physical param-
eters, and the spatial location. In particular, the mean
magnetic moment can be computed by integration of f .

In contrast to the classical discretization approaches,
e.g., in [4], we propose a simultaneous discretization of
f in both directional and temporal variables, which is

advantageous for model reduction techniques. The pro-
posed scheme is based on a higher-order method for
convection-dominated problems.

We aim to approximate the Fokker-Planck equation
across a wide range of combinations of parameters. How-
ever, solving the PDE numerically for each combination
is highly inefficient. We address this by model reduction
using reduced basis methods: at the price of a potentially
very expensive precomputation, we obtain a projection
of (1) onto a low-dimensional space of functions that can
be solved very efficiently for each given b and D.

II. Methods and materials

We consider a numerical scheme for solving the Fokker-
Planck equation that combines an angular-temporal
high-order method with a reduced basis approximation.

We adapt the hybrid mixed discontinuous Galerkin
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Figure 1: Mean magnetic moment of the Néel Fokker-Planck
equation with the magnetic field frequencies fx , fy = fx /2 and
fz = fx /4.

finite element method from [5], reformulating (1) as

divS2×S2×R
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= 0.

This method combines a (dual) mixed variational formu-
lation for the pure diffusion problem with a discontinu-
ous Galerkin (DG) formulation for the pure convection
problem. One major advantage of this method is that it
can be used with arbitrary polynomial order to obtain
high convergence rates for smooth solutions. The com-
putational complexity caused by the higher-dimensional
domain can be reduced by sparse grid combination tech-
niques [6] or low-rank methods [7].

To address the parameter dependence of the PDE, we
use reduced basis methods. The main idea is to extract ef-
ficient angular-temporal basis functions from solutions
of the full problem for different parameter combinations.
By projecting onto this reduced basis, we obtain a com-
pressed problem that can be solved very efficiently for
new parameter values while maintaining controlled er-
rors with respect to the full solution.

III. Results and discussion
We present preliminary results for the angular-temporal
discretization of the pure Néel case [3], considering only
a singular angular variable. An example of the computed
mean magnetic moments is shown in Fig. 1, where we
obtain similar results as in the finite volume scheme [4].

We illustrate the reduced basis approach using a time-
dependent model problem in one spatial dimension,
where the parameter dependence enters in the scalar
convection term b =µ with µ ∈ [0.1, 5], covering weak as
well as strong convection. Fig. 2 shows a sample solution
of this PDE along with the error decay of the reduced
basis method. Here the online phase requires solving
reduced linear systems with 16 unknowns for each pa-
rameter combination, compared to approximately 106

degrees of freedom in the full model, while maintain-
ing an estimated error of 10−8 in the mesh norm. The
speed-up factor is approximately 4 ·105.

Figure 2: (a): solution for µ = 2 with diffusion D = 0.2; (b):
Error decay with respect to number of reduced basis functions.

IV. Conclusion
We demonstrate an efficient high-order numerical
scheme for convection-dominated problems with pa-
rameter dependence. Preliminary results indicate the
potential for developing an efficient solver for the full
Brown-Néel model.
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