International Journal on Magnetic Particle Imaging
Vol 6 No 1 (2020): Int J Mag Part Imag
https://doi.org/10.18416/IJMPI.2020.2003001

Research Articles

3D-Printing with Incorporated Iron Particles for Magnetic Actuation and MPI

Main Article Content

Anna C. Bakenecker (Institute of Medical EngineeringUniversity of Luebeck), Anselm von Gladiss (Institute of Medical Engineering University of Luebeck), Thomas Friedrich (Institute of Medical Engineering University of Luebeck), Thorsten M. Buzug (Institute of Medical Engineering University of Luebeck)

Abstract

Magnetic particle imaging (MPI) scanners cannot only be used to image the distribution of magnetic nanoparticles, but the magnetic fields also facilitate to actuate magnetic devices. This enables the dual use of MPI scanners for simultaneous actuation and visualization of magnetic objects. It is of great interest for a variety of medical applications to magnetically steer devices, such as catheters or capsule endoscopes. Endoscopic capsules, which are driven by the natural peristaltic movements, are already in clinical routine. However, they cannot be used for the investigation of the stomach, since the capsules cannot be steered. Hence, steerable magnetic capsules can be used to endoscopically investigate the whole gastrointestinal tract, to take a biopsy or to deliver drugs locally. The 3D tomographic localization of such steerable capsules is an open task, but it is essential to localize detected abnormalities for subsequent treatments. Since MPI provides tomographic real-time images of magnetic material, it seems to be beneficial to visualize the actuation process with MPI. In this work, a material for additive manufacturing is investigated, which consists of polylactide with incorporated iron powder of µm-sized particles. The material is analyzed by light microscopy, vibrating sample magnetometry and magnetic particle spectrometry. Then the feasibility to actuate and visualize macroscopic devices made of this material inside an MPI scanner is shown. The fabricated object has a length of about 2 cm and can be rotated when applying sinusoidal currents to the focus field coils of an MPI scanner. In addition, the objects' shape led to a forward velocity in water. The suitability of the 3D-printing material for MPI is shown and static 3D images are presented.
 
Int. J. Mag. Part. Imag. 6(1), 2020, Article ID: 2003001, DOI: 10.18416/IJMPI.2020.2003001

Article Details

References

[1] G. Iddan, G. Meron, A. Glukhovsky, and P. Swain. Wireless capsule endoscopy. Nature, 405(6785):417–417, 2000, doi:10.1038/35013140.

[2] F. Carpi, S. Galbiati, and A. Carpi. Magnetic shells for gastrointestinal endoscopic capsules as a means to control their motion. Biomedicine & Pharmacotherapy, 60(8):370–374, 2006, doi:10.1016/j.biopha.2006.07.001.

[3] J. Rey, H. Ogata, N. Hosoe, K. Ohtsuka, N. Ogata, K. Ikeda, H. Aihara, I. Pangtay, T. Hibi, S. Kudo, and H. Tajiri. Feasibility of stomach exploration with a guided capsule endoscope. Endoscopy, 42(07):541–545, 2010, doi:10.1055/s-0030-1255521.

[4] S. Park, K.-i. Koo, S. M. Bang, J. Y. Park, S. Y. Song, and D. D. Cho. A novel microactuator for microbiopsy in capsular endoscopes. Journal of Micromechanics and Microengineering, 18(2):025032, 2008, doi:10.1088/0960-1317/18/2/025032.

[5] M. Simi, G. Gerboni, A.Menciassi, and P. Valdastri.Magnetic Torsion Spring Mechanism for a Wireless Biopsy Capsule. Journal of Medical Devices, 7(4), 2013, doi:10.1115/1.4025185.

[6] M. Sitti, H. Ceylan, W. Hu, J. Giltinan, M. Turan, S. Yim, and E. Diller. Biomedical Applications of Untethered Mobile Milli/Microrobots. Proceedings of the IEEE, 103(2):205–224, 2015, doi:10.1109/JPROC.2014.2385105.

[7] D. Son, H. Gilbert, and M. Sitti. Magnetically Actuated Soft Capsule Endoscope for Fine-Needle Biopsy. Soft Robotics, 2019, doi:10.1089/soro.2018.0171.

[8] S. Yim and M. Sitti. Shape-Programmable Soft Capsule Robots for Semi-Implantable Drug Delivery. IEEE Transactions on Robotics, 28(5):1198–1202, 2012, doi:10.1109/TRO.2012.2197309.

[9] M. Sendoh, K. Ishiyama, K. Arai, M. Jojo, F. Sato, and H. Matsuki. Fabrication of magnetic micromachine for local hyperthermia. IEEE Transactions on Magnetics, 38(5):3359–3361, 2002, doi:10.1109/TMAG.2002.802305.

[10] G. Kósa, P. Jakab, G. Székely, and N. Hata. MRI driven magnetic microswimmers. BiomedicalMicrodevices, 14(1):165–178, 2012, doi:10.1007/s10544-011-9594-7.

[11] F. Carpi, N. Kastelein, M. Talcott, and C. Pappone. Magnetically Controllable Gastrointestinal Steering of Video Capsules. IEEE Transactions on Biomedical Engineering, 58(2):231–234, 2011, doi:10.1109/TBME.2010.2087332.

[12] B. Gleich and J. Weizenecker. Tomographic imaging using the nonlinear response of magnetic particles. Nature, 435(7046):1214–1217, 2005, doi:10.1038/nature03808.

[13] C. Jacobi, T. Friedrich, and K. Lüdtke-Buzug. Synthesis and Characterisation of Superparamagnetic Polylactic acid based Polymers. International Journal on Magnetic Particle Imaging, 3(2), 2017, doi:10.18416/IJMPI.2017.1710001.

[14] J. Wells, N. Löwa, H. Paysen, U. Steinhoff, and F.Wiekhorst. Probing particle-matrix interactions during magnetic particle spectroscopy. Journal of Magnetism and Magnetic Materials, 475:421–428, 2019, doi:10.1016/j.jmmm.2018.11.109.

[15] J. Haegele, N. Panagiotopoulos, S. Cremers, J. Rahmer, J. Franke, R. L. Duschka, S. Vaalma, M. Heidenreich, J. Borgert, P. Borm, J. Barkhausen, and F. M. Vogt. Magnetic Particle Imaging: A Resovist Based Marking Technology for Guide Wires and Catheters for Vascular Interventions. IEEE Transactions on Medical Imaging, 35(10):2312–2318, 2016, doi:10.1109/TMI.2016.2559538.

[16] J. Rahmer, C. Stehning, and B. Gleich. Spatially selective remote magnetic actuation of identical helical micromachines. Science Robotics, 2(3):2845, 2017, doi:10.1126/scirobotics.aal2845.

[17] A. C. Bakenecker, A. von Gladiss, T. Friedrich, U. Heinen, H. Lehr, K. Lüdtke-Buzug, and T. M. Buzug. Actuation and visualization of a magnetically coated swimmer with magnetic particle imaging. Journal of Magnetism and Magnetic Materials, 473:495–500, 2019, doi:10.1016/j.jmmm.2018.10.056.

[18] X. Zhang, T.-A. Le, and J. Yoon. Development of a real time imaging-based guidance system of magnetic nanoparticles for targeted drug delivery. Journal ofMagnetism and Magnetic Materials, 427:345–351, 2017, doi:10.1016/j.jmmm.2016.10.056.

[19] N. Nothnagel, J. Rahmer, B. Gleich, A. Halkola, T. M. Buzug, and J. Borgert. Steering of Magnetic Devices With a Magnetic Particle Imaging System. IEEE Transactions on Biomedical Engineering, 63(11):2286–2293, 2016, doi:10.1109/TBME.2016.2524070.

[20] J. Rahmer, D. Wirtz, C. Bontus, J. Borgert, and B. Gleich. Interactive Magnetic Catheter Steering With 3-D Real-Time Feedback Using Multi-Color Magnetic Particle Imaging. IEEE Transactions on Medical Imaging, 36(7):1449–1456, 2017, doi:10.1109/TMI.2017.2679099.

[21] J. Rahmer, C. Stehning, and B. Gleich. Remote magnetic actuation using a clinical scale system. PLOS ONE, 13(3):e0193546M. Dao, Ed., 2018, doi:10.1371/journal.pone.0193546.

[22] A. Bakenecker, T. Friedrich, A. von Gladiss, and T. M. Buzug, Lateral Movement of a Helical Swimmer Induced by Rotating Focus Fields in a Preclinical MPI Scanner, in International Workshop on Magnetic Particle Imaging, 99–100, 2018.

[23] F. Griese, T. Knopp, C. Gruettner, F. Thieben, K. Müller, S. Loges, P. Ludewig, and N. Gdaniec. Simultaneous Magnetic Particle Imaging and Navigation of large superparamagnetic nanoparticles in bifurcation flow experiments. Journal ofMagnetism and Magnetic Materials, 498:166206, 2020, doi:10.1016/j.jmmm.2019.166206.

[24] T. Knopp and T. M. Buzug, Magnetic Particle Imaging: An Introduction to Imaging Principles and Scanner Instrumentation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, doi:10.1007/978-3-642-04199-0.

[25] S. Biederer, T. Knopp, T. F. Sattel, K. Lüdtke-Buzug, B. Gleich, J. Weizenecker, J. Borgert, T. M. Buzug, and K. Lüdtke-Buzug. Magnetization response spectroscopy of superparamagnetic nanoparticles for magnetic particle imaging. Journal of Physics D: Applied Physics, 42(20):205007, 2009, doi:10.1088/0022-3727/42/20/205007.

[26] X. Chen, M. Graeser, A. Behrends, A. von Gladiss, and T. M. Buzug. FirstMeasurement Results of a3D Magnetic Particle Spectrometer. International Journal on Magnetic Particle Imaging, 4(1), 2018, doi:10.18416/IJMPI.2018.1810001.

[27] S. Savonius, TheWing-Rotor - in Theory and Practise. Savonius und Co. Helsingfors, Finnland, 1926, URL: https://www.prh.fi/stc/attachments/innogalleria/savonius_kirja.pdf.

[28] M. Graeser, T. Knopp, P. Szwargulski, T. Friedrich, A. von Gladiss, M. Kaul, K. M. Krishnan, H. Ittrich, G. Adam, and T. M. Buzug. Towards Picogram Detection of Superparamagnetic Iron-Oxide Particles Using a Gradiometric Receive Coil. Scientific Reports, 7(1):6872, 2017, doi:10.1038/s41598-017-06992-5.

[29] A. Ghosh and P. Fischer. Controlled Propulsion of Artificial Magnetic Nanostructured Propellers. Nano Letters, 9(6):2243–2245, 2009, doi:10.1021/nl900186w.

[30] S. Tottori, L. Zhang, F. Qiu, K. K. Krawczyk, A. Franco-Obregón, and B. J. Nelson. Magnetic Helical Micromachines: Fabrication, Controlled Swimming, and Cargo Transport. Advanced Materials, 24(6):811–816, 2012, doi:10.1002/adma.201103818.

[31] M. Medina-Sánchez, L. Schwarz, A. K.Meyer, F. Hebenstreit, and O. G. Schmidt. Cellular Cargo Delivery: Toward Assisted Fertilization by Sperm-Carrying Micromotors. Nano Letters, 16(1):555–561, 2016, doi:10.1021/acs.nanolett.5b04221.