International Journal on Magnetic Particle Imaging IJMPI
Vol. 5 No. 1-2 (2019): Int J Mag Part Imag
https://doi.org/10.18416/IJMPI.2019.1906001

Research Articles

Remote Detection of Magnetic Signals with a Compact Atomic Magnetometer Module Towards Human MRI–MPI Hybrid Systems

Main Article Content

Takenori Oida (Kyoto University), Kentaro Kato (Kyoto University), Yosuke Ito (Kyoto University), Tetsuo Kobayashi (Kyoto University)

Abstract

This study demonstrates the possibility of remotely detecting magnetic fields generated from superparamagnetic iron oxide nanoparticles using a compact optically pumped atomic magnetometer (OPAM) module with a flux transformer (FT) during the development of magnetic resonance imaging–magnetic particle imaging (MRI–MPI) hybrid systems. Results of previous studies particularly demonstrated odd harmonics of the magnetic nanoparticle (MNP) signals. In addition, studies have demonstrated that the magnitude of odd harmonics was proportional to the quantity of magnetic nanoparticles, and the minimum MNP quantity can possibly be estimated from signal measurements. In conclusion, experimental results suggested that MNP signals from the Resovist solution with Fe of 0.01 µmol could be detected using a compact OPAM module with FT as an ultra-low field–magnetic resonance imaging detector.


 


Int. J. Mag. Part. Imag. 5(1-2), 2019, Article ID: 1906001, DOI: 10.18416/IJMPI.2019.1906001

Article Details

References

[1] B. Gleich and J. Weizenecker. Tomographic imaging using the nonlinear response of magnetic particles.Nature, 435(7046):1214–1217, 2005, doi:10.1038/nature03808.
[2] P. W. Goodwill and S. M. Conolly. The X-Space Formulation of the Magnetic Particle Imaging Process: 1-D Signal, Resolution, Bandwidth, SNR, SAR, and Magnetostimulation. IEEE Transactions onMedical Imaging, 29(11):1851–1859, 2010, doi:10.1109/TMI.2010.2052284.
[3] T. Knopp and T. M. Buzug,Magnetic Particle Imaging: An Introduction to Imaging Principles and Scanner Instrumentation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, doi:10.1007/978-3-642-04199-0.
[4] D. Budker and M. Romalis. Optical magnetometry. Nature Physics, 3(4):227–234, 2007, doi:10.1038/nphys566.
[5] D. Budker and D. F. Jackson Kimball, Eds., Optical Magnetometry. Cambridge: Cambridge University Press, 2013, doi:10.1017/CBO9780511846380.
[6] J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis. High-Sensitivity Atomic Magnetometer Unaffected by Spin-Exchange Relaxation. Physical ReviewLetters, 89(13):130801, 2002, doi:10.1103/PhysRevLett.89.130801.
[7] I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis. A subfemtotesla multichannel atomic magnetometer. Nature, 422(6932):596–599, 2003, doi:10.1038/nature01484.
[8] H. B. Dang, A. C. Maloof, and M. V. Romalis. Ultra high sensitivity magnetic field and magnetization measurements with an atomic magnetometer. Applied Physics Letters, 97(15):151110, 2010, doi:10.1063/1.3491215.
[9] H. Xia, A. Ben-Amar Baranga,D.Hoffman, and M. V. Romalis. Magnetoencephalography with an atomic magnetometer. Applied Physics Letters, 89(21):211104, 2006, doi:10.1063/1.2392722.
[10] K. Kamada, Y. Ito, and T. Kobayashi. Human MCG measurements with a high-sensitivity potassium atomic magnetometer. Physiological Measurement, 33(6):1063–1071, 2012, doi:10.1088/0967-3334/33/6/1063.
[11] T. H. Sander, J. Preusser, R. Mhaskar, J. Kitching, L. Trahms, and S. Knappe. Magnetoencephalography with a chip-scale atomic magnetometer. Biomedical Optics Express, 3(5):981, 2012, doi:10.1364/BOE.3.000981.
[12] V. K. Shah and R. T. Wakai. A compact, high performance atomic magnetometer for biomedical applications. Physics in Medicine and Biology, 58(22):8153–8161, 2013, doi:10.1088/0031-9155/58/22/8153.
[13] K. Kamada, D. Sato, Y. Ito, H. Natsukawa, K. Okano, N. Mizutani, and T. Kobayashi. Human magnetoencephalogram measurements using newly developed compact module of high sensitivity atomic magnetometer. Japanese Journal of Applied Physics, 54(2):026601, 2015, doi:10.7567/JJAP.54.026601.
[14] I. Savukov, V. Zotev, P. Volegov, M. Espy, A.Matlashov, J. Gomez, and R. Kraus. MRI with an atomic magnetometer suitable for practical imaging applications. Journal of Magnetic Resonance, 199(2):188–191, 2009, doi:10.1016/j.jmr.2009.04.012.
[15] I. Savukov and T. Karaulanov. Anatomical MRI with an atomic magnetometer. Journal ofMagnetic Resonance, 231:39–45, 2013, doi:10.1016/j.jmr.2013.02.020.
[16] K. Kamada, S. Taue, and T. Kobayashi. Optimization of Bandwidth and Signal Responses of Optically Pumped AtomicMagnetometers for Biomagnetic Applications. Japanese Journal of Applied Physics, 50(5):056602, 2011, doi:10.1143/JJAP.50.056602.
[17] S. Taue, Y. Sugihara, T. Kobayashi, K. Ishikawa, and K. Kamada. Magnetic Field Mapping and Biaxial Vector Operation for Biomagnetic Applications Using High-Sensitivity Optically Pumped Atomic Magnetometers. Japanese Journal of Applied Physics, 50:116604, 2011, doi:10.1143/JJAP.50.116604.
[18] Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi. Development of an optically pumped atomic magnetometer using a K-Rb hybrid cell and its application to magnetocardiography. AIP Advances, 2(3):032127, 2012, doi:10.1063/1.4742847.
[19] K. Kamada, Y. Ito, S. Ichihara, N.Mizutani, and T. Kobayashi. Noise reduction and signal-to-noise ratio improvement of atomic magnetometers with optical gradiometer configurations. Optics Express, 23(5):6976, 2015, doi:10.1364/OE.23.006976.
[20] I. Hilschenz, Y. Ito, H. Natsukawa, T. Oida, T. Yamamoto, and T. Kobayashi. Remote detected Low-Field MRI using an optically pumped atomic magnetometer combined with a liquid cooled pre-polarization coil. Journal ofMagnetic Resonance, 274:89–94, 2017, doi:10.1016/j.jmr.2016.11.006.
[21] S. Colombo, V. N. Lebedev, A. Tonyushkin, Z. D. Grujic, V. Dolgovskiy, and A. Weis. Towards a mechanical MPI scanner based on atomic magnetometry. International Journal onMagnetic Particle Imaging, 3(1), 2017, doi:10.18416/IJMPI.2017.1703006.
[22] T. Oida, Y. Ito, K. Kamada, and T. Kobayashi. Detecting rotating magnetic fields using optically pumped atomic magnetometers for measuring ultra-low-field magnetic resonance signals. Journal of Magnetic Resonance, 217:6–9, 2012, doi:10.1016/j.jmr.2012.01.015.
[23] O. Kosch, U. Heinen, L. Trahms, and F. Wiekhorst. Preparing system functions for quantitative MPI. International Journal on Magnetic Particle Imaging, 3(2), 2017, doi:10.18416/IJMPI.2017.1706002.
[24] D. Allan. Statistics of atomic frequency standards. Proceedings of the IEEE, 54(2):221–230, 1966, doi:10.1109/PROC.1966.4634.
[25] P. Goodwill, G. Scott, P. Stang, and S. Conolly. Narrowband Magnetic Particle Imaging. IEEE Transactions on Medical Imaging, 28(8):1231–1237, 2009, doi:10.1109/TMI.2009.2013849.