International Journal on Magnetic Particle Imaging IJMPI
Vol. 6 No. 1 (2020): Int J Mag Part Imag
https://doi.org/10.18416/IJMPI.2020.2003004

Research Articles

Investigating Spatial Resolution, Field Sequences and Image Reconstruction Strategies using Hybrid Phantoms in MPI

Main Article Content

Anselm von Gladiss , Matthias Graeser (Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf Institute for Biomedical Imaging, Hamburg University of Technology), Aileen Cordes (Institute of Medical Engineering, University of Lübeck), Anna C. Bakenecker (Institute of Medical Engineering, University of Lübeck), André Behrends (Institute of Medical Engineering, University of Lübeck), Xin Chen (Institute of Medical Engineering, University of Lübeck), Thorsten M. Buzug (Institute of Medical Engineering, University of Lübeck)

Abstract

Hybrid phantoms allow for measurement-based evaluation of particle samples, reconstruction algorithms and field sequences without need of a Magnetic Particle Imaging (MPI) scanning device. Even dynamic hybrid phantoms can be generated using dynamic magnetic offset fields. Multi-dimensional Magnetic Particle Spectrometers are capable of emulating both hybrid system matrices and hybrid phantoms, which can be reconstructed into images. It is shown that a spatial resolution of few hundred micrometres can be achieved for both one- and multi-dimensional excitation using MPI technology. The spatial resolution of reconstructed images increases when including additional receive channels into the reconstruction process. For multi-dimensional imaging the sine-based Lissajous trajectory outperforms the cosine-based Lissajous trajectory in terms of spatial resolution. Both the high signal to noise ratio of a spectrometer and the versatility of hybrid phantom design will enforce innovative measurement-based research on key parameters for MPI.


 


Int. J. Mag. Part. Imag. 6(1), 2020, Article ID: 2003004, DOI: 10.18416/IJMPI.2020.2003004

Article Details

References

[1] M. Graeser, A. von Gladiss, M. Weber, and T. M. Buzug. Two dimensional magnetic particle spectrometry. Physics in Medicine and Biology, 62(9):3378–3391, 2017, doi:10.1088/1361-6560/aa5bcd.

[2] A. von Gladiss, M. Graeser, P. Szwargulski, T. Knopp, and T. M. Buzug. Hybrid system calibration for multidimensional magnetic particle imaging. Physics in Medicine and Biology, 62(9):3392–3406, 2017, doi:10.1088/1361-6560/aa5340.

[3] T. Knopp, S. Biederer, T. F. Sattel, M. Erbe, and T. M. Buzug. Prediction of the spatial resolution of magnetic particle imaging using the modulation transfer function of the imaging process. IEEE Transactions on Medical Imaging, 30(6):1284–1292, 2011, doi:10.1109/TMI.2011.2113188.

[4] T. Knopp, S. Biederer, T. F. Sattel, J. Weizenecker, B. Gleich, J. Borgert, and T. M. Buzug. Trajectory analysis for magnetic particle imaging. Physics in Medicine and Biology, 54(2):385–397, 2009, doi:10.1088/0031-9155/54/2/014.

[5] M. Graeser, K. Bente, A. Neumann, and T. M. Buzug. Trajectory dependent particle response for anisotropic mono domain particles in magnetic particle imaging. Journal of Physics D: Applied Physics, 49(4):045007, 2016, doi:10.1088/0022-3727/49/4/045007.

[6] B. Gleich and J. Weizenecker. Tomographic imaging using the nonlinear response of magnetic particles. Nature, 435(7046):1214–1217, 2005, doi:10.1038/nature03808.

[7] L. R. Croft, P. W. Goodwill, and S. M. Conolly. Relaxation in X-Space Magnetic Particle Imaging. IEEE Transactions on Medical Imaging, 31(12):2335–2342, 2012, doi:10.1109/TMI.2012.2217979.

[8] P. W. Goodwill and S. M. Conolly. The X-Space Formulation of the Magnetic Particle Imaging Process: 1-D Signal, Resolution, Bandwidth, SNR, SAR, and Magnetostimulation. IEEE Transactions on Medical Imaging, 29(11):1851–1859, 2010, doi:10.1109/TMI.2010.2052284.

[9] D. Schmidt, M. Graeser, A. von Gladiss, T. M. Buzug, and U. Steinhoff. Imaging Characterization of MPI Tracers Employing Offset Measurements in a two Dimensional Magnetic Particle Spectrometer. International Journal on Magnetic Particle Imaging, 1(2), 2016, doi:10.18416/IJMPI.2016.1604002.

[10] C. Debbeler, A. von Gladiss, T. Friedrich, T. M. Buzug, and K. Lüdtke-Buzug, New MPI Tracer Material - A Resolution Study, in International Workshop on Magnetic Particle Imaging, 33–34, 2018.

[11] A. von Gladiss, M. Graeser, and T. M. Buzug, Influence of Excitation Signal Coupling on Reconstructed Images in Magnetic Particle Imaging, in Bildverarbeitung für die Medizin 2018. Informatik aktuell, Springer Vieweg, 2018, 92–97. doi:10.1007/978-3-662-56537-7_36.

[12] M. Graeser, F. Thieben, P. Szwargulski, F. Werner, N. Gdaniec, M. Boberg, F. Griese, M. Möddel, P. Ludewig, D. van de Ven, O. M. Weber, O. Woywode, B. Gleich, and T. Knopp. Human-sized magnetic particle imaging for brain applications. Nature Communications, 10(1):1936, 2019, doi:10.1038/s41467-019-09704-x.

[13] S. Biederer, T. F. Sattel, T. Knopp, and T. M. Buzug, Variable Trajektoriendichte für Magnetic Particle Imaging, in Bildverarbeitung für die Medizin 2010, 2010.

[14] O. Kosch, H. Paysen, J. Wells, F. Ptach, J. Franke, L. Wöckel, S. Dutz, and F. Wiekhorst. Evaluation of a separate-receive coil by magnetic particle imaging of a solid phantom. Journal of Magnetism and Magnetic Materials, 471:444–449, 2019, doi:10.1016/j.jmmm.2018.09.114.

[15] J. Weizenecker, B. Gleich, J. Rahmer, H. Dahnke, and J. Borgert. Three-dimensional real-time in vivo magnetic particle imaging. Physics in Medicine and Biology, 54(5):L1–L10, 2009, doi:10.1088/0031-9155/54/5/L01.

[16] B. Zheng, T. Vazin, P. W. Goodwill, A. Conway, A. Verma, E. Ulku Saritas, D. Schaffer, and S. M. Conolly. Magnetic Particle Imaging tracks the long-term fate of in vivo neural cell implants with high image contrast. Scientific Reports, 5(1):14055, 2015, doi:10.1038/srep14055.

[17] N. Gdaniec, P. Szwargulski, M. Möddel, M. Boberg, and T. Knopp, Multi–patch magnetic particle imaging of a phantom with periodic motion, in International Workshop on Magnetic Particle Imaging, 27–28, 2019.

[18] M. N. Schauerte, P. Szwargulski, M. G. Kaul, T. Knopp, and M. Graeser, A Schematic Kidney Phantom for Magnetic Particle Imaging, in International Workshop on Magnetic Particle Imaging, 59–60, 2019.

[19] P. Szwargulski, M. Exner, P. Ludewig, T. Knopp, and M. Graeser, From a static to a dynamic 3D anatomical phantom of a rat, in Additive Manufacturing Meets Medicine 1 (S1), 2019.

[20] A. von Gladiss, M. Graeser, and T. M. Buzug, Increasing the MPI Frame Rate by Excitation Signal Phase-Shifting and ReceiveSignal-Splitting, in International Workshop on Magnetic Particle Imaging, 215–216, 2018.

[21] X. Chen, M. Graeser, A. Behrends, A. von Gladiss, and T. M. Buzug. First Measurement Results of a 3D Magnetic Particle Spectrometer. International Journal on Magnetic Particle Imaging, 4(1), 2018, doi:10.18416/IJMPI.2018.1810001.

[22] M. Weber, J. Beuke, A. von Gladiss, K. Gräfe, P. Vogel, V. C. Behr, and T. M. Buzug. Novel Field Geometry Using Two Halbach Cylinders for FFL-MPI. International Journal on Magnetic Particle Imaging, 94(2), 2018, doi:10.18416/IJMPI.2018.1811004.

[23] M. Graeser, T. Knopp, P. Szwargulski, T. Friedrich, A. von Gladiss, M. Kaul, K. M. Krishnan, H. Ittrich, G. Adam, and T. M. Buzug. Towards Picogram Detection of Superparamagnetic Iron-Oxide Particles Using a Gradiometric Receive Coil. Scientific Reports, 7(1):6872, 2017, doi:10.1038/s41598-017-06992-5.

[24] H. Paysen, J. Wells, O. Kosch, U. Steinhoff, J. Franke, L. Trahms, T. Schaeffter, and F. Wiekhorst. Improved sensitivity and limit-of-detection using a receive-only coil in magnetic particle imaging. Physics in Medicine & Biology, 63(13):13NT02, 2018, doi:10.1088/1361-6560/aacb87.

[25] M. Klarhöfer, B. Csapo, C. Balassy, J. Szeles, and E. Moser. Highresolution blood flow velocity measurements in the human finger. Magnetic Resonance in Medicine, 45(4):716–719, 2001, doi:10.1002/mrm.1096.

[26] A. von Gladiss, M. Graeser, K. Lüdtke-Buzug, and T. M. Buzug. Contribution of brownian rotation and particle assembly polarisation to the particle response in magnetic particle spectrometry. Current Directions in Biomedical Engineering, 1(1):298–301, 2015, doi:10.1515/cdbme-2015-0074.

[27] F. Werner, N. Gdaniec, and T. Knopp. Improving the Spatial Resolution of Bidirectional Cartesian MPI Data using Fourier Techniques. International Journal on Magnetic Particle Imaging, 3(1), 2017, doi:10.18416/IJMPI.2017.1703007.

Most read articles by the same author(s)

<< < 3 4 5 6 7 8 9 > >>