International Journal on Magnetic Particle Imaging
Vol 6 No 2 (2020): Int J Mag Part Imag
https://doi.org/10.18416/IJMPI.2020.2004001

Research Articles

Exploring Parameters of Magnetic Particles in 1D Field Excitation

Main Article Content

Tobias Klemme (Universität zu Lübeck), Thorsten M. Buzug (Universität zu Lübeck), Alexander Neumann (Universität zu Lübeck)

Abstract

This work explores how different parameters, e.g. magnetic anisotropy and core radius, influence the signal/spectrum of magnetic particles in a one-dimensional excitation field. Simulations are performed using a model considering both the mechanical and magnetization dynamics of the particle. The performed simulations show an increase of amplitude at higher harmonics for anisotropy constants within a certain range. This increase is also observed for different magnetic radii. The obtained knowledge can help to improve the performance of magnetic particles in magnetic particle imaging.
 
Int. J. Mag. Part. Imag. 6(2), 2020, Article ID: 2004001, DOI: 10.18416/IJMPI.2020.2004001

Article Details

References

[1] B. Gleich and J. Weizenecker. Tomographic imaging using the nonlinear response of magnetic particles.Nature, 435(7046):1214–1217, 2005, doi:10.1038/nature03808.

[2] S. Dutz and R. Hergt. Magnetic particle hyperthermia — a promising tumour therapy? Nanotechnology, 25(45):452001, 2014, doi:10.1088/0957-4484/25/45/452001.

[3] D. B. Reeves and J. B. Weaver. Combined Néel and Brown rotational Langevin dynamics in magnetic particle imaging, sensing, and therapy. Applied Physics Letters, 107(22):223106, 2015, doi:10.1063/1.4936930.

[4] J. Weizenecker, B. Gleich, J. Rahmer, and J. Borgert. Micromagnetic simulation study on the magnetic particle imaging performance of anisotropic mono-domain particles. Physics in Medicine and Biology, 57(22):7317–7327, 2012, doi:10.1088/0031-9155/57/22/7317.

[5] S. Biederer, T. F. Sattel, T. Knopp, K. Lüdtke-Buzug, B. Gleich, J. Weizenecker, J. Borgert, and T. M. Buzug, The influence of the particle size distribution on the image resolution in magnetic particle imaging, in ESMRMB Congress 2009, 499, 2009.

[6] A. Neumann and T. M. Buzug, Stochastic simulations of magnetic particles: Comparison of different methods, in International Workshop on Magnetic Particle Imaging, 213, 2018.

[7] J. Weizenecker, B. Gleich, J. Rahmer, and J. Borgert, Particle dynamics of mono-domain particles in magnetic particle imaging, in Magnetic Nanoparticles, 3–15, WORLD SCIENTIFIC, 2010. doi:10.1142/9789814324687_0001.

[8] C. Shasha, E. Teeman, and K. M. Krishnan. Harmonic Simulation Study of Simultaneous Nanoparticle Size and Viscosity Differentiation. IEEE Magnetics Letters, 8:1–5, 2017, doi:10.1109/LMAG.2017.2754238.

[9] W. T. Coffey and Y. P. Kalmykov, The Langevin Equation, 3rd Ed. World Scientific, 2017.

[10] M. I. Shliomis and V. I. Stepanov, Theory of the Dynamic Susceptibility of Magnetic Fluids, in, 2007, 1–30. doi:10.1002/9780470141465.ch1.

[11] E. Stoner and E. P.Wohlfarth. A mechanism of magnetic hysteresis in heterogeneous alloys. Philosophical Transactions of the Royal Society of London. Series A,Mathematical and Physical Sciences, 240(826):599–642, 1948, doi:10.1098/rsta.1948.0007.

[12] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, 2nd Ed. Springer Berlin Heidelberg, 1995.