International Journal on Magnetic Particle Imaging IJMPI
Vol. 5 No. 1-2 (2019): Int J Mag Part Imag
https://doi.org/10.18416/IJMPI.2020.2003002
Extending the Toolset for MPI Instrumentation and Reconstruction
Main Article Content
Copyright (c) 2020 Patrick Vogel
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
The first issue of the fifth volume of the International Journal on Magnetic Particle Imaging (IJMPI) comes with four manuscripts, covering the topics of instrumentation, particle characterization, image reconstruction and standardization in the field of MPI. The manuscripts describe a novel and sensitive signal detector for magnetic fields, an open-source software package for data processing and reconstruction, a new kind of spectrometer for particle characterization, and a temporal polyrigid registration method for reconstructed MPI patches handling possible motion of large objects during imaging.
Int. J. Mag. Part. Imag. 5(1-2), 2020, Article ID: 2003002, DOI: 10.18416/IJMPI.2020.2003002
Article Details
References
[2] T. Knopp, N. Gdaniec, and M. Möddel. Magnetic particle imaging: from proof of principle to preclinical applications. Physics in Medicine & Biology, 62(14):R124–R178, 2017, doi:10.1088/1361-6560/aa6c99.
[3] B. Zheng, E. Yu, R. Orendorff, K. Lu, J. J. Konkle, Z. W. Tay, D. Hensley, X. Y. Zhou, P. Chandrasekharan, E. U. Saritas, P.W. Goodwill, J. D. Hazle, and S. M. Conolly. Seeing SPIOs Directly In Vivo with Magnetic Particle Imaging.Molecular Imaging and Biology, 19(3):385–390, 2017, doi:10.1007/s11307-017-1081-y.
[4] Z. W. Tay, P. Chandrasekharan, X. Y. Zhou, E. Yu, B. Zheng, and S. Conolly. In vivo tracking and quantification of inhaled aerosol using magnetic particle imaging towards inhaled therapeutic monitoring. Theranostics, 8(13):3676–3687, 2018, doi:10.7150/thno.26608.
[5] S. Herz, P. Vogel, T. Kampf, P. Dietrich, S. Veldhoen, M. A. Rückert, R. Kickuth, V. C. Behr, and T. A. Bley. Magnetic Particle Imaging–Guided Stenting. Journal of Endovascular Therapy, 26(4):512–519, 2019, doi:10.1177/1526602819851202.
[6] P. Ludewig, N. Gdaniec, J. Sedlacik, N. D. Forkert, P. Szwargulski, M. Graeser, G. Adam, M. G. Kaul, K. M. Krishnan, R. M. Ferguson, A. P. Khandhar, P. Walczak, J. Fiehler, G. Thomalla, C. Gerloff, T. Knopp, and T.Magnus.Magnetic Particle Imaging for Real-Time Perfusion Imaging in Acute Stroke. ACSNano, 11(10):10480–10488, 2017, doi:10.1021/acsnano.7b05784.
[7] L. Wu, Y. Zhang, G. Steinberg, H. Qu, S. Huang, M. Cheng, T. Bliss, F. Du, J. Rao, G. Song, L. Pisani, T. Doyle, S. Conolly, K. Krishnan, G. Grant, and M. Wintermark. A Review of Magnetic Particle Imaging and Perspectives on Neuroimaging. American Journal of Neuroradiology, 40(2):206–212, 2019, doi:10.3174/ajnr.A5896.
[8] T. Oida, K. Kato, Y. Ito, and T. Kobayashi. Remote Detection of Magnetic Signals with a Compact Atomic Magnetometer Module Towards Human MRI–MPI Hybrid Systems. International Journal on Magnetic Particle Imaging, 5(1-2), 2019, doi:10.18416/IJMPI.2019.1906001.
[9] D. Budker and M. Romalis. Optical magnetometry. Nature Physics, 3(4):227–234, 2007, doi:10.1038/nphys566.
[10] I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis. A subfemtotesla multichannel atomic magnetometer. Nature, 422(6932):596–599, 2003, doi:10.1038/nature01484.
[11] P. Vogel, S. Lother, M. A. Ruckert, W. H. Kullmann, P. M. Jakob, F. Fidler, and V. C. Behr. MRI Meets MPI: A Bimodal MPI-MRI Tomograph. IEEE Transactions on Medical Imaging, 33(10):1954–1959, 2014, doi:10.1109/TMI.2014.2327515.
[12] I. Schmale, B. Gleich, J. D. Schmidt, J. Rahmer, C. Bontus, R. Eckart, B. David, M. Heinrich, O. Mende, O. Woywode, J. Jokram, and J. Borgert, Human PNS and SAR study in the frequency range from 24 to 162 kHz, in 2013 International Workshop on Magnetic Particle Imaging (IWMPI), IEEE, 2013. doi:10.1109/IWMPI.2013.6528346.
[13] T. Knopp, T. Viereck, G. Bringout, M. Ahlborg, A. von Gladiss, C. Kaethner, A. Neumann, P. Vogel, J. Rahmer, and M. Möddel. MDF:Magnetic Particle ImagingData Format. ArXiv e-prints, 2019. arXiv: 1602.06072. URL: http://arxiv.org/abs/1602.06072v8.
[14] T. Knopp, P. Szwargulski, F. Griese, M. Grosser, M. Boberg, and M. Möddel. MPIReco.jl: Julia Package for Image Reconstruction in MPI. International Journal on Magnetic Particle Imaging, 5(1-2), 2019, doi:10.18416/IJMPI.2019.1907001.
[15] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A Fresh Approach to Numerical Computing. SIAM Review, 59(1):65–98, 2017, doi:10.1137/141000671.
[16] S. Biederer, T. Knopp, T. F. Sattel, K. Lüdtke-Buzug, B. Gleich, J. Weizenecker, J. Borgert, T. M. Buzug, and K. Lüdtke-Buzug. Magnetization response spectroscopy of superparamagnetic nanoparticles for magnetic particle imaging. Journal of Physics D: Applied Physics, 42(20):205007, 2009, doi:10.1088/0022-3727/42/20/205007.
[17] C. Knopke, B. W. Ficko, and S. G. Diamond. One-Dimensional Multi-Frequency Spectrometer. International Journal on Magnetic Particle Imaging, 5(1-2), 2019, doi:10.18416/IJMPI.2019.1907002.
[18] J. Ehrhardt, M. Ahlborg, H. Uzunova, T. M. Buzug, and H. Handels. Temporal Polyrigid Registration for Patch-based MPI Reconstruction of Moving Objects. International Journal on Magnetic Particle Imaging, 5(1-2), 2019, doi:10.18416/IJMPI.2019.1908001.
[19] J.Rahmer, B. Gleich, C.Bontus, I. Schmale, J.D. Schmidt, J.Kanzenbach, O. Woywode, J. Weizenecker, and J. Borgert, Results on Rapid 3D Magnetic Particle Imaging with a Large Field of View, in International Society for Magnetic Resonance in Medicine 19, 629, 2011.