International Journal on Magnetic Particle Imaging IJMPI
Vol. 8 No. 1 Suppl 1 (2022): Int J Mag Part Imag
https://doi.org/10.18416/IJMPI.2022.2203050
Optimizing magnetic particle image resolution using superferromagnetic nanoparticles modified through post-synthesis oxidation
Main Article Content
Copyright (c) 2022 Jacob Bryan, Benjamin Fellows, K.L Barry Fung, Prashant Chandrasekharan, Steven Conolly
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Magnetic Particle Imaging (MPI) is a novel tracer-based imaging modality that allows for exquisitely sensitive celltherapy trackingin vivo, cancer imaging, lung ventilation/perfusion imaging, and hemorrhage detection. MPIuses superparamagnetic iron oxide Particles (SPIOs) as tracers with linear contrast, zero tissue attenuation, andmicromolar sensitivity, all with zero ionizing radiation and infinite reporter persistence. However, MPI’s poor spatialresolution (roughly 1 mm in a 7T/m gradient) is holding back clinical translation. Our lab recently reported theuse of superferromagnetic nanoparticles (SFMIOs) for MPI demonstrating a 10-fold improvement (?100?m) inresolution compared to the approximately mm for commercially available SPIOs. In the current work, we detail theproduction of SFMIO for MPI using a modified extended LaMer synthesis. We implement a post-oxidation step tothe process for repeated and reproducible production of high resolution SFMIO particles.
Article Details
References
Colson, B. D. Fellows, Y. Lu, Q. Huynh, C. Saayujya, P. Keselman,
D. Hensley, K. Lu, R. Orendorff, J. Konkle, E. U. Saritas, B. Zheng, P.
Goodwill, and S. Conolly, Chapter 15 - magnetic particle imaging
for vascular, cellular and molecular imaging, in Molecular Imaging (Second Edition), B. D. Ross and S. S. Gambhir, Eds., Second
Edition, Academic Press, 2021, 265–282, ISBN: 978-0-12-816386-3.
doi:https://doi.org/10.1016/B978-0-12-816386-3.00015-6.
[2] Z. W. Tay, D. W. Hensley, E. C. Vreeland, B. Zheng, and S. M. Conolly.
The Relaxation Wall: Experimental Limits to Improving MPI Spatial Resolution by Increasing Nanoparticle Core size. Biomed Phys
Eng Express, 3(3), 2017, doi:10.1088/2057-1976/aa6ab6.
[3] Z. W. Tay, D. Hensley, J. Ma, P. Chandrasekharan, B. Zheng, P.
Goodwill, and S. Conolly. Pulsed Excitation in Magnetic Particle Imaging. IEEE Trans Med Imaging, 38(10):2389–2399, 2019,
doi:10.1109/TMI.2019.2898202.
[4] Z. W. Tay, S. Savliwala, D. W. Hensley, K. B. Fung, C. Colson, B. D. Fellows, X. Zhou, Q. Huynh, Y. Lu, B. Zheng,
P. Chandrasekharan, S. M. Rivera-Jimenez, C. M. RinaldiRamos, and S. M. Conolly. Superferromagnetic nanoparticles
enable order-of-magnitude resolution & sensitivity gain in magnetic particle imaging. Small Methods, 5(11):2100796, 2021,
doi:https://doi.org/10.1002/smtd.202100796.
[5] E. C. Vreeland, J. Watt, G. B. Schober, B. G. Hance, M. J.
Austin, A. D. Price, B. D. Fellows, T. C. Monson, N. S. Hudak, L.
Maldonado-Camargo, A. C. Bohorquez, C. Rinaldi, and D. L. Huber. Enhanced nanoparticle size control by extending lamer’s
mechanism. Chemistry of Materials, 27(17):6059–6066, 2015,
doi:10.1021/acs.chemmater.5b02510.
[6] Z. Yan, S. FitzGerald, T. M. Crawford, and O. T. Mefford. Oxidation
of wüstite rich iron oxide nanoparticles via post-synthesis annealing. Journal of Magnetism and Magnetic Materials, 539:168405,
2021, doi:https://doi.org/10.1016/j.jmmm.2021.168405.
[7] M. Unni, A. M. Uhl, S. Savliwala, B. H. Savitzky, R. Dhavalikar,
N. Garraud, D. P. Arnold, L. F. Kourkoutis, J. S. Andrew, and C.
Rinaldi. Thermal decomposition synthesis of iron oxide nanoparticles with diminished magnetic dead layer by controlled addition
of oxygen. ACS Nano, 11(2):2284–2303, 2017, PMID: 28178419.
doi:10.1021/acsnano.7b00609.
[8] R. Hufschmid, H. Arami, R. M. Ferguson, M. Gonzales, E. Teeman, L. N. Brush, N. D. Browning, and K. M. Krishnan. Synthesis of phase-pure and monodisperse iron oxide nanoparticles
by thermal decomposition. Nanoscale, 7:11142–11154, 25 2015,
doi:10.1039/C5NR01651G.
[9] Z. W. Tay, Goodwill, D. Hensley, L. Taylor, B. Zheng, and S. Conolly.
A High-Throughput, Arbitrary-Waveform, MPI Spectrometer and
Relaxometer for Comprehensive Magnetic Particle Optimization
and Characterization. Nature Scientific Reports, 34180(30), 2016,
doi:10.1038/srep34180.
[10] S. P. Utami, A. Fadli, E. O. Sari, and A. S. Addabsi. Crystalgrowth kinetics of magnetite (fe3o4) nanoparticles with ostwald ripening model approach. IOP Conference Series: Materials Science and Engineering, 345:012010, 2018, doi:10.1088/1757-
899x/345/1/012010