International Journal on Magnetic Particle Imaging
Vol 8 No 1 Suppl 1 (2022): Int J Mag Part Imag
https://doi.org/10.18416/IJMPI.2022.2203051

Proceedings Articles

Elucidating super-resolution Magnetic Particle Imaging: superferromagnetic remanence decay through MPI signal evolution informs super-resolution MPI scan strategies

Main Article Content

K. L. Barry Fung  , Caylin Colson , Jacob Bryan  , Benjamin D. Fellows , Chinmoy Saayujya  , Prashant Chandrasekharan , Carlos Rinaldi , Steven Conolly 

Abstract

Magnetic particle imaging (MPI) is a tracer imaging modality that detects superparamagnetic iron oxide nanoparticles (SPIOs), enabling sensitive, radiation-free imaging of cells and disease pathologies. Preclinical MPI resolution is limited to ~1-2 mm (with ferucarbotran) due to scanner and particle constraints. Recent SPIOs have shown 10-fold resolution and signal improvements at high concentrations, with unusually sharp magnetic responses. Dubbed superferromagnetic iron oxide particles (SFMIOs), these particles appear to interact with neighbours, effectively amplifying applied fields. SFMIO signal is highly dependent on the remanence of magnetically-generated SFMIO superstructures. This work explores SFMIO remanence evolution after magnetic polarization, showing zero-field decay around 120 ms, and various strategies for maintaining SFMIO behaviour that set the minimum scan speed for in vivo usage. The resolution improvements provided by generating and maintaining SFMIO superstructures will allow for 10-fold reduction in scanner field strength and thus a 100-fold reduction in cost

Article Details

References

[1]B. Gleich and J. Weizenecker. Tomographic imaging using the non-linear response of magnetic particles. Nature, 435(7046):1214–1217,2005, doi:10.1038/nature03808.
[2]P. W. Goodwill, E. U. Saritas, L. R. Croft, T. N. Kim, K. M. Krishnan, D. V. Schaffer, and S. M. Conolly. X-Space MPI: Magnetic Nanoparticles for Safe Medical Imaging. Advanced Materials, 24(28):3870–3877, 2012, doi:10.1002/adma.201200221.
[3]E. Y. Yu, P. Chandrasekharan, R. Berzon, Z. W. Tay, X. Y. Zhou, A. P. Khandhar, R. M. Ferguson, S. J. Kemp, B. Zheng, P. W. Goodwill, M. F. Wendland, K. M. Krishnan, S. Behr, J. Carter, and S. M. Conolly. Magnetic Particle Imaging for Highly Sensitive, Quantitative, and Safe in Vivo Gut Bleed Detection in a Murine Model. ACS Nano,11(12):12067–12076, 2017, doi:10.1021/acsnano.7b04844.
[4]Z. W. Tay, D. Hensley, J. Ma, P. Chandrasekharan, B. Zheng, P. Good-will, and S. Conolly. Pulsed Excitation in Magnetic Particle Imaging. IEEE Transactions on Medical Imaging, 38(10):2389–2399, 2019,doi:10.1109/TMI.2019.2898202.
[5]Z. W. Tay, S. Savliwala, D. W. Hensley, K. L. B. Fung, C. Colson, B. D.Fellows, X. Y. Zhou, Q. Huynh, Y. Lu, B. Zheng, P. Chandrasekharan, S. Rivera-Jimenez, and S. M. Conolly. Superferromagnetic nanoparticles enable order-of-magnitude resolution and sensitivity gain in magnetic particle imaging. Small Materials, 2021.
[6]E. C. Vreeland, J. Watt, G. B. Schober, B. G. Hance, M. J. Austin, A. D. Price, B. D. Fellows, T. C. Monson, N. S. Hudak, L. Maldonado-Camargo, A. C. Bohorquez, C. Rinaldi, and D. L. Huber. Enhanced Nanoparticle Size Control by Extending LaMer’s Mechanism. Chemistry of Materials, 27(17):6059–6066,2015, doi:10.1021/acs.chemmater.5b02510.
[7]Z. W. Tay, P. W. Goodwill, D. W. Hensley, L. A. Taylor, B. Zheng, and S. M. Conolly. A High-Throughput, Arbitrary-Waveform, MPI Spectrometer and Relaxometer for Comprehensive Magnetic Particle Optimization and Characterization. Scientific Reports, 6(1):34180,2016, doi:10.1038/srep34180

Most read articles by the same author(s)