International Journal on Magnetic Particle Imaging
Vol 8 No 1 Suppl 1 (2022): Int J Mag Part Imag
https://doi.org/10.18416/IJMPI.2022.2203080

Proceedings Articles

Characterizing the performance of commercial magnetic particles for magnetic particle imaging

Main Article Content

Kim Hwang Yeo , Irati Rodrigo (UC Berkeley), Renesmee Kuo  (UC Berkeley), Prashant Chandrasekharan , Benjamin Fellows , Steven Conolly 

Abstract

The properties of magnetic nanoparticles (MNPs) are key to the effectiveness of magnetic particle imaging (MPI). While commercial MNPs are used extensively in clinical and research applications, there are still challenges in understanding the effect of certain MNP properties on its resolution and sensitivity. Being able to understand these trends will enhance efforts in optimizing parameters in MNP production for specific applications. In this study, we looked at MNP core size, clustering, and coating and their effects on its FWHM, and compared the sensitivity of different commercial particles. We identified a trend in FWHM and MNP core size as well as effects of certain coating on FWHM.

Article Details

References

[1] B. Gleich and J. Weizenecker. Tomographic imaging using the
nonlinear response of magnetic particles.Nature, 435(7046):1214–
1217, 2005, doi:10.1038/nature03808.
[2] A.Mohtashamdolatshahi, H. Kratz, O. Kosch, R. Hauptmann, N.
Stolzenburg, F. Wiekhorst, I. Sack, B. Hamm, M. Taupitz, and J.
Schnorr. In vivo magnetic particle imaging: Angiography of inferior
vena cava and aorta in rats using newly developed multicore
particles. Scientific Reports, 10(1):17247, 2020, Bandiera_abtest:
doi:10.1038/s41598-020-74151-4.
[3] X. Y. Zhou, K. E. Jeffris, E. Y. Yu, B. Zheng, P.W. Goodwill, P. Nahid,
and S. M. Conolly. First In VivoMagnetic Particle Imaging of Lung
Perfusion in Rats. Physics in medicine and biology, 62(9):3510–
3522, 2017, doi:10.1088/1361-6560/aa616c.
[4] B. Zheng, T. Vazin, P.W. Goodwill, A. Conway, A. Verma, E. Ulku
Saritas, D. Schaffer, and S. M. Conolly. Magnetic Particle Imaging
tracks the long-term fate of in vivo neural cell implants
with high image contrast. Scientific Reports, 5(1):14055, 2015,
doi:10.1038/srep14055.
[5] O. C. Sehl, J. J. Gevaert, K. P. Melo, N. N. Knier, and P. J. Foster.
A Perspective on Cell Tracking with Magnetic Particle Imaging.
Tomography, 6(4):315–324, 2020, doi:10.18383/j.tom.2020.00043.
[6] Surface protein targeted white blood cell tracking of inflammation
using Magnetic Particle Imaging (WBC-MPI) - King Long Barry
Fung - WMIC. (visited on 12/13/2021).
[7] M. Graeser, F. Thieben, P. Szwargulski, F.Werner, N. Gdaniec, M.
Boberg, F. Griese, M.Möddel, P. Ludewig, D. van de Ven, O. M.Weber,
O.Woywode, B. Gleich, and T. Knopp. Human-sized magnetic
particle imaging for brain applications. Nature Communications,
10(1), 2019, doi:10.1038/s41467-019-09704-x.
[8] E. Y. Yu, P. Chandrasekharan, R. Berzon, Z. W. Tay, X. Y. Zhou,
A. P. Khandhar, R. M. Ferguson, S. J. Kemp, B. Zheng, P.W. Goodwill,
M. F. Wendland, K. M. Krishnan, S. Behr, J. Carter, and S. M.
Conolly. Magnetic Particle Imaging for Highly Sensitive, Quantitative
and Safe In Vivo Gut Bleed Detection in a Murine Model. ACS
nano, 11(12):12067–12076, 2017, doi:10.1021/acsnano.7b04844.
[9] E. Y. Yu, M. Bishop, B. Zheng, R. M. Ferguson, A. P. Khandhar,
S. J. Kemp, K. M. Krishnan, P. W. Goodwill, and S. M.
Conolly. Magnetic Particle Imaging: A Novel in Vivo Imaging Platform for
Cancer Detection. Nano Letters, 17(3):1648–1654, 2017,
doi:10.1021/acs.nanolett.6b04865.
[10] Z. W. Tay, P. Chandrasekharan, A. Chiu-Lam, D. W. Hensley, R.
Dhavalikar, X. Y. Zhou, E. Y. Yu, P.W. Goodwill, B. Zheng, C. Rinaldi,
and S. M. Conolly. Magnetic Particle Imaging-Guided Heating in
Vivo Using Gradient Fields for Arbitrary Localization of Magnetic
Hyperthermia Therapy. ACS Nano, 12(4):3699–3713, 2018, Publisher:
American Chemical Society. doi:10.1021/acsnano.8b00893.
[11] P.W. Goodwill and S. M. Conolly. The X-Space Formulation of the
Magnetic Particle Imaging Process: 1-D Signal, Resolution, Bandwidth,
SNR, SAR, and Magnetostimulation. IEEE Transactions on
Medical Imaging, 29(11):1851–1859, 2010,ConferenceName: IEEE
Transactions on Medical Imaging. doi:10.1109/TMI.2010.2052284.
[12] Z. W. Tay, P. W. Goodwill, D. W. Hensley, L. A. Taylor, B. Zheng,
and S. M. Conolly. A High-Throughput, Arbitrary-Waveform, MPI
Spectrometer and Relaxometer for Comprehensive Magnetic Particle
Optimization and Characterization. Sci. Rep., 6:34180, 2016.
[13] Z.W. Tay,D.W.Hensley, E. C. Vreeland, B. Zheng, and S. M.Conolly.
The Relaxation Wall: Experimental Limits to Improving MPI Spatial
Resolution by Increasing Nanoparticle Core size. Biomedical
physics & engineering express, 3(3):035003, 2017, doi:10.1088/2057-
1976/aa6ab6.
[14] I. Rodrigo, J. Bryan, C. Saayuju, R. Kuo, K. Fung, C. Colson, Z.W.
Tay, B. Fellows, Q. Huynh, P. Chandrasekharan, and S. M. Conolly,
Comparing the performance of commercially available magnetic
nanoparticles for magnetic particle imaging, presented at the
World Molecular Imaging Congress, Virtual, 2021.

Most read articles by the same author(s)