International Journal on Magnetic Particle Imaging IJMPI
Vol. 8 No. 2 (2022): Int J Mag Part Imag
https://doi.org/10.18416/IJMPI.2022.2210001

Research Articles

VivoTrax+ improves the detection of cancer cells with magnetic particle imaging

Main Article Content

Julia Gevaert (University of Western Ontario), Kyle Van Beek , Olivia C. Sehl , Paula J. Foster 

Abstract

Cellular imaging is a rapidly growing field as novel tracers and imaging techniques are developed. Magnetic particle imaging (MPI) detects superparamagnetic iron oxide (SPIO) particles, which can be used to label cells., The type of SPIO has a critical role in determining MPI sensitivity and resolution. For cell tracking applications, the ideal SPIO should label cells efficiently and retain its sensitivity after cellular uptake. VivoTraxTM, a commercially available and commonly used SPIO for MPI, was recently re-released as VivoTrax+ with an improved size distribution enriched for larger particles. In this study, VivoTrax+ is shown to enhance cellular labeling and improve in vitro/in vivo sensitivity. Importantly, the sensitivity of both SPIO significantly decreased after cellular internalization. The results from this study emphasize the importance of translating SPIO performance in vivo to maintain its utility for cell tracking applications.


 


Int. J. Mag. Part. Imag. 8(2), 2022, Article ID: 2210001, DOI: 10.18416/IJMPI.2022.2210001

Article Details

References

[1] J. Bulte, P. Walczak, M. Janowski, K. M. Krishnan, H. Arami, A. Halkola, B. Gleich, and J. Rahmer, Quantitative “Hot-Spot” Imaging of Transplanted Stem Cells Using Superparamagnetic Tracers and Magnetic Particle Imaging, Tomography 1(2): 91-97, 2015. doi: 10.18383/j.tom.2015.00172
[2] A. V. Makela, J. M. Gaudet, and P. J. Foster, Quantifying Tumor Associated Macrophages in Breast Cancer: A Comparison of Iron and Fluorine-Based MRI Cell Tracking, Scientific Reports 7(1): 42109, 2017. doi: 10.1038/srep42109
[3] H. Nejadnik, P. Pandit, O. Lenkov, A. P. Lahiji, K. Yerneni, and H. E. Daldrup-Link, Ferumoxytol Can Be Used for Quantitative Magnetic Particle Imaging of Transplanted Stem Cells, Mol Imaging Biol, 21(3): 465-472, 2019. doi: 10.1007/s11307-018-1276-x
[4] O. Sehl, A. Makela, A. Hamilton, and P. Foster, Trimodal Cell Tracking In Vivo: Combining Iron- and Fluorine-Based Magnetic Resonance Imaging with Magnetic Particle Imaging to Monitor the Delivery of Mesenchymal Stem Cells and the Ensuing Inflammation, Tomography, 5(4): 367- 376, 2019. doi: 10.18383/j.tom.2019.00020
[5] G. Song, M. Chen, Y. Zhang, L. Cui, H. Qu, X. Zheng, M. Wintermark, Z. Liu, and J. Rao, Janus Iron Oxides @ Semiconducting Polymer Nanoparticle Tracer for Cell Tracking by Magnetic Particle Imaging, Nano Lett, 18(1): 182-189, 2018. doi: 10.1021/acs.nanolett.7b03829
[6] P. Wang et al., Magnetic Particle Imaging of Islet Transplantation in the Liver and under the Kidney Capsule in Mouse Models, Quant. Imaging Med. Surg., 8(2): 114-122, 2018. doi: 10.21037/qims.2018.02.06
[7] Q. Wang, X. Ma, H. Liao, Z. Liang, F. Li, J. Tian, and D. Ling, Artificially Engineered Cubic Iron Oxide Nanoparticle as a High-Performance Magnetic Particle Imaging Tracer for Stem Cell Tracking, ACS Nano, 14(2): 2053-2062, 2020. doi: 10.1021/acsnano.9b08660
[8] B. Zheng, M. P. von See, E. Yu, B. Gunel, K. Lu, T. Vazin, D. V. Schaffer, P. W. Goodwill, and S. M. Conolly, Quantitative Magnetic Particle Imaging Monitors the Transplantation, Biodistribution, and Clearance of Stem Cells In Vivo, Theranostics 6(3): 291-301, 2016. doi: 10.7150/thno.13728
[9] D. Eberbeck, F. Wiekhorst, S. Wagner, and L. Trahms, How the Size Distribution of Magnetic Nanoparticles Determines Their Magnetic Particle Imaging Performance, Appl. Phys. Lett., 98(18): 182502, 2011. doi: 10.1063/1.3586776
[10] D. Eberbeck, C. L. Dennis, N. F. Huls, K. L. Krycka, C. Gruttner, and F. Westphal, Multicore Magnetic Nanoparticles for Magnetic Particle Imaging, IEEE Transactions on Magnetics, 49(1): 269-274, 2013. doi: 10.1109/TMAG.2012.2226438
[11] C. Mcfadden, C. L. Mallett, and P. J. Foster, Labeling of Multiple Cell Lines Using a New Iron Oxide Agent for Cell Tracking by MRI, Contrast Media & Molecular Imaging, 6(6): 514-522, 2011. doi: 10.1002/cmmi.456
[12] A. Rose, Human Vision, in Vision: Human and Electronic, edited by A. Rose (Springer US, Boston, MA, 1973), pp. 29–53. doi: 10.1007/978-1-4684-2037-1_2
[13] O. C. Sehl, J. J. Gevaert, K. P. Melo, N. N. Knier, and P. J. Foster, A Perspective on Cell Tracking with Magnetic Particle Imaging, Tomography, 6(4): 315-324, 2020. doi: 10.18383/j.tom.2020.00043
[14] A. S. Arbab, G. T. Yocum, H. Kalish, E. K. Jordan, S. A. Anderson, A. Y. Khakoo, E. J. Read, and J. A. Frank, Efficient Magnetic Cell Labeling with Protamine Sulfate Complexed to Ferumoxides for Cellular MRI, Blood, 104(4): 1217-1223, 2004. doi: 10.1182/blood-2004-02-0655
[15] Z. W. Tay, D. W. Hensley, E. C. Vreeland, B. Zheng, and S. M. Conolly, The Relaxation Wall: Experimental Limits to Improving MPI Spatial Resolution by Increasing Nanoparticle Core Size, Biomedical Physics & Engineering Express, 3(3): 035003, 2017. doi: 10.1088/2057-1976/aa6ab6
[16] T. Yoshida, N. B. Othman, and K. Enpuku, Characterization of Magnetically Fractionated Magnetic Nanoparticles for Magnetic Particle Imaging, Journal of Applied Physics, 114(17): 173908, 2013. doi: 10.1063/1.4829484
[17] N. Löwa, P. Knappe, F. Wiekhorst, D. Eberbeck, A. F. Thünemann, and L. Trahms, Hydrodynamic and Magnetic Fractionation of Superparamagnetic Nanoparticles for Magnetic Particle Imaging, Journal of Magnetism and Magnetic Materials, 380: 266-270, 2015. doi: 10.1016/j.jmmm.2014.08.057
[18] A. F. Thünemann, S. Rolf, P. Knappe, and S. Weidner, In Situ Analysis of a Bimodal Size Distribution of Superparamagnetic Nanoparticles, Anal. Chem., 81(1): 296-301, 2009. doi: https://doi.org/10.1021/ac802009q
[19] H. Suzuka, A. Mimura, Y. Inaoka, and K. Murase, Magnetic Nanoparticles in Macrophages and Cancer Cells Exhibit Different Signal Behavior on Magnetic Particle Imaging, J Nanosci Nanotechnol, 19(11): 6857-6865, 2019. doi: 10.1166/jnn.2019.16619
[20] H. Arami and K. M. Krishnan, Intracellular Performance of Tailored Nanoparticle Tracers in Magnetic Particle Imaging, Journal of Applied Physics 115, 17B306 (2014).
[21] H. Arami, R. M. Ferguson, A. P. Khandhar, and K. M. Krishnan, Size-Dependent Ferrohydrodynamic Relaxometry of Magnetic Particle Imaging Tracers in Different Environments, Med Phys, 40(7): 071904, 2013. doi: 10.1118/1.4810962
[22] J. A. Mindell, Lysosomal Acidification Mechanisms, Annu Rev Physiol, 74: 69-86, 2012. doi: 10.1146/annurev-physiol-012110-142317
[23] M. Levy et al., Long Term in Vivo Biotransformation of Iron Oxide Nanoparticles, Biomaterials, 32(16): 3988-3999, 2011. doi: 10.1016/j.biomaterials.2011.02.031
[24] E. Teeman, C. Shasha, J. E. Evans, and K. M. Krishnan, Intracellular Dynamics of Superparamagnetic Iron Oxide Nanoparticles for Magnetic Particle Imaging, Nanoscale, 11(16): 7771-7780, 2019. doi: 10.1039/C9NR01395D
[25] D. E. Markov, H. Boeve, B. Gleich, J. Borgert, A. Antonelli, C. Sfara, and M. Magnani, Human Erythrocytes as Nanoparticle Carriers for Magnetic Particle Imaging, Phys. Med. Biol., 55(21): 6461-6473, 2010. doi: 10.1088/0031-9155/55/21/008
[26] J. A. Frank, B. R. Miller, A. S. Arbab, H. A. Zywicke, E. K. Jordan, B. K. Lewis, L. H. Bryant, and J. W. M. Bulte, Clinically Applicable Labeling of Mammalian and Stem Cells by Combining Superparamagnetic Iron Oxides and Transfection Agents, Radiology, 228(2): 480-487, 2003. doi: 10.1148/radiol.2281020638
[27] A. S. Arbab, G. T. Yocum, L. B. Wilson, A. Parwana, E. K. Jordan, H. Kalish, and J. A. Frank, Comparison of Transfection Agents in Forming Complexes with Ferumoxides, Cell Labeling Efficiency, and Cellular Viability, Mol Imaging, 3(1): 24-32, 2004. doi: 10.1162/15353500200403190
[28] J. J. Gevaert, C. Fink, J. Dikeakos, G. A. Dekaban, and P. J. Foster, Magnetic Particle Imaging Is a Sensitive in Vivo Imaging Modality for the Quantification of Dendritic Cell Migration, biorXiv, 2021. doi: 10.1101/2021.09.22.461401