International Journal on Magnetic Particle Imaging
Vol 8 No 2 (2022): Int J Mag Part Imag
https://doi.org/10.18416/IJMPI.2022.2212001

Research Articles

A sensitive, stable, continuously rotating FFL MPI system for functional imaging of the rat brain

Main Article Content

Eli Mattingly  , Erica Mason (Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA), Konstantin Herb (ETH Zurich, Department of Physics, Zurich, Switzerland), Monika Śliwiak  (Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA), John Drago  (Massachusetts Institute of Technology, Cambridge, MA, USA), Matthias Graeser  (Fraunhofer IMTE, Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, Lübeck, Germany), Lawrence Wald  (Harvard Medical School, Boston, MA, USA)

Abstract

Magnetic particle imaging noninvasively maps the distribution of superparamagnetic iron oxide nanoparticles with high sensitivity. Since the particles are confined to the blood pool within the brain, it may be well-suited for cerebral blood volume (CBV)-based functional neuroimaging with MPI (fMPI). Here, we present a magnetic particle imaging system designed to detect the CBV modulation at the hemodynamic timescale (~5 sec) in rodents. It has the capacity to record sufficiently fast image time-series for several hours continuously. The time-series imaging was achieved with an optimized drive coil that maintains ~0.01% per minute current magnitude stability. An electrical slip ring and rotary union for cooling water allows continuous mechanical rotation of the 2.83 T/m Field-Free Line (FFL) permanent magnets and shift coils. The system achieves a 6.7 ng Fe detection limit (SNR = 5) in a single 5 sec image in the time-series, a spatial resolution of 3.0 mm in a 3 cm diameter field of view. The designs have been made open-source to enable replication of this device.
 
Int. J. Mag. Part. Imag. 8(2), 2022, Article ID: 2212001, DOI: 10.18416/IJMPI.2022.2212001

Article Details

References

[1] A. Behrends, K. Tessars, J. Schumacher, A. Neumann, and T. M. Buzug. A standard procedure for implementation and automatic correction of LCC matching networks. International Journal on Magnetic Particle Imaging, 6(2):1–3, 2020. ISSN 23659033. doi: 10.18416/IJMPI.2020.2009036.

[2] Brenda R. Chen, Matthew B. Bouchard, Addason F.H. McCaslin, Sean A. Burgess, and Elizabeth M.C. Hillman. High-speed vascular dynamics of the hemodynamic response. NeuroImage, 54(2):1021– 1030, 2011. ISSN 10538119. doi: 10.1016/j.neuroimage.2010.09.036. URL http://dx.doi.org/10.1016/j.neuroimage.2010.09.036.

[3] Clarissa Zimmerman Cooley, Joseph B. Mandeville, Erica E. Mason, Emiri T. Mandeville, and Lawrence L. Wald. Rodent Cerebral Blood Volume (CBV) changes during hypercapnia observed using Magnetic Particle Imaging (MPI) detection. NeuroImage, 178 (April):713–720, 2018. ISSN 10959572. doi: 10.1016/j.neuroimage.2018.05.004. URL https://doi.org/10.1016/j.neuroimage.2018.05.004.

[4] L. Ferkovic, D. Ilic, and R. Malaric. Mutual Inductance of a Precise Rogowski Coil in Dependence of the Position of Primary Conductor. IEEE Transactions on Instrumentation and Measurement, 58(1):122–128, 1 2009. ISSN 0018-9456. doi: 10.1109/TIM.2008.928412. URL http://ieeexplore.ieee. org/document/4635031/.

[5] Patrick W. Goodwill and Steven M. Conolly. Multidimensional X-space magnetic particle imaging. IEEE Transactions on Medical Imaging, 30(9):1581–1590, 9 2011. ISSN 02780062. doi: 10.1109/TMI.2011.2125982.

[6] M Graeser, A. Von Gladiss, M Weber, and T M Buzug. Two dimensional magnetic particle spectrometry. Physics in Medicine and Biology, 62(9):3378–3391, 2017. ISSN 13616560. doi: 10.1088/1361-6560/aa5bcd.

[7] T. Knopp, N. Gdaniec, R. Rehr, M. Graeser, and T. Gerkmann. Correction of linear system drifts in magnetic particle imaging. Physics in Medicine and Biology, 64(12), 2019. ISSN 13616560. doi: 10.1088/1361-6560/ab2480.

[8] Justin J Konkle, Patrick W Goodwill, Emine Ulku Saritas, Bo Zheng, Kuan Lu, and Steven M Conolly. Twenty-fold acceleration of 3D projection reconstruction MPI. Biomedizinische Technik, 58(6): 565–576, 2013. ISSN 00135585. doi: 10.1515/ bmt-2012-0062.

[9] Joseph B. Mandeville, John J.A. Marota, Barry E. Kosofsky, John R. Keltner, Ralph Weissleder, Bruce R. Rosen, and Robert M. Weisskoff. Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation. Magnetic Resonance in Medicine, 39(4):615–624, 1998. ISSN 07403194. doi: 10.1002/mrm.1910390415.

[10] Erica E Mason, Stephen F. Cauley, Eli Mattingly, Monika Sliwiak, and Lawrence L Wald. Side Lobe Informed Center Extraction (SLICE): a projection- space forward model reconstruction for a 2D imaging system. International Journal on Magnetic Particle Imaging, 8(1), 2022. ISSN 23659033. doi: 10.18416/ijmpi.2022.2203023.

[11] Eli Mattingly, Erica E Mason, Konstantin Herb, Monika Sliwiak, Katrin Brandt, Clarissa Z Cooley, and Lawrence L Wald. OS-MPI: An open-source magnetic particle imaging project. International Journal on Magnetic Particle Imaging, 6(2):1–3, 2020. ISSN 23659033. doi: 10.18416/IJMPI.2020.2009059.

[12] Eli Mattingly, Monika S´liwiak, John M Drago, Erica E Mason, Matthias Graeser, and Lawrence L Wald. A drive filter design for MPI with harmonic notching and selective damping. International Journal on Magnetic Particle Imaging, 8(1 Suppl 1), 3 2022. ISSN 2365-9033. doi: 10.18416/IJMPI.2022.2203073. URL https://journal.iwmpi.org/index.php/iwmpi/article/view/452.

[13] David Meeker. Finite Element Method Magnetics Version 4.2 Userâs Manual, 2015.

[14] Kenya Murase, Samu Hiratsuka, Ruixiao Song, and Yuki Takeuchi. Development of a system for mag- netic particle imaging using neodymium magnets and gradiometer. Japanese Journal of Applied Physics, 53(6), 2014. ISSN 13474065. doi: 10.7567/ JJAP.53.067001.

[15] P.N. Murgatroyd and D. Belahrache. D-shaped toroidal cage inductors. IEE Proceedings B Electric Power Applications, 136(2):96, 1989. ISSN 01437038. doi:10.1049/ip-b.1989.0014. URL https://digital-library.theiet.org/content/journals/10.1049/ip-b.1989.0014.

[16] INGO SCHMALE, BERNHARD GLEICH JÃRN BORGERT, and JÃRGEN WEIZENECKER. NOISE WITHIN MAGNETIC PARTICLE IMAGING. In
Magnetic Nanoparticles, pages 154–161. WORLD SCIENTIFIC, 8 2010. ISBN 978-981-4324-67-0. doi: 10.1142/9789814324687/0022. URL
http://www.worldscientific.com/doi/abs/10.1142/9789814324687_0022.

[17] INGO SCHMALE, BERNHARD GLEICH, JÃRN BORGERT, and JÃRGEN WEIZENECKER. JFET NOISE MODELLING FOR MPI RECEIVERS. In
Magnetic Nanoparticles, pages 148–153. WORLD SCIENTIFIC, 8 2010. ISBN 978-981-4324-67-0. doi: 10.1142/9789814324687\0021. URL
http://www.worldscientific.com/doi/abs/10.1142/9789814324687_0021.

[18] Zhi Wei Tay, Daniel W. Hensley, Prashant Chandrasekharan, Bo Zheng, and Steven M. Conolly. Optimization of Drive Parameters for Resolution, Sensitivity and Safety in Magnetic Particle Imaging. IEEE Transactions on Medical Imaging, pages 1–1, 2019. ISSN 0278-0062. doi: 10.1109/TMI.2019.2957041. URL https://ieeexplore.ieee.org/document/8918255/.

[19] Matthias Weber, Jonas Beuke, Anselm von Gladiss, Ksenija Gräfe, Patrick Vogel, Volker C. Behr, and Thorsten M. Buzug. Novel Field Geometry Using Two Halbach Cylinders for FFL-MPI. International Journal on Magnetic Particle Imaging, 4(1), 2018. doi: 10.18416/IJMPI.2018.1811004.

[20] Juergen Weizenecker, Bernhard Gleich, and Joern Borgert. Magnetic particle imaging using a field free line. Journal of Physics D: Applied Physics, 41(10), 2008. ISSN 00223727. doi: 10.1088/0022-3727/41/10/105009.

[21] Bo Zheng, Patrick Goodwill, Wisely Yang, and Steven Conolly. Capacitor Distortion in Magnetic Particle Imaging. In International Workshop for Magnetic Particle Imaging, page 319, 2012.

[22] D. J. Zigrang and N. D. Sylvester. A review of explicit friction factor equations. Journal of Energy Resources Technology, Transactions of the ASME, 107(2):280–283, 1985. ISSN 15288994. doi: 10.1115/1.3231190.

Most read articles by the same author(s)