International Journal on Magnetic Particle Imaging IJMPI
Vol. 9 No. 1 Suppl 1 (2023): Int J Mag Part Imag
https://doi.org/10.18416/IJMPI.2023.2303067
Brownian superparamagnetic nanoparticles for cell viability assessment in Magnetic Particle Imaging
Main Article Content
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Molecular imaging tools can noninvasively track cells in vivo. However, no techniques today can rapidly monitor cell therapies to allow for nimble treatment optimization for each patient, the epitome of Personalized Medicine. Magnetic Particle Imaging (MPI) is a new tracer imaging technology that could soon provide MDs unequivocal therapy treatment feedback in just three days. MPI with Brownian superparamagnetic iron oxide nanoparticles shows promise towards noninvasive sensing of cell viability via viscosity changes in apoptotic cells. This unique ability could greatly improve the efficacy of cell therapies by enabling rapid personalization of the treatment.
Article Details
References
[2] B. Zheng, T. Vazin, P. W. Goodwill, A. Conway, A. Verma, E. U. Saritas, D. Schaffer, and S. M. Conolly. Magnetic Particle Imaging tracks the long-term fate of in vivo neural cell implants with high image contrast. Sci Rep, 5:14055, 2015.
[3] X. Y. Zhou, K. E. Jeffris, E. Y. Yu, B. Zheng, P. W. Goodwill, P. Nahid, and S. M. Conolly. First in vivo magnetic particle imaging of lung perfusion in rats. Phys Med Biol, 62(9):3510–3522, 2017.
[4] E. Y. Yu, P. Chandrasekharan, R. Berzon, Z. W. Tay, X. Y. Zhou, A. P. Khandhar, R. M. Ferguson, S. J. Kemp, B. Zheng, P. W. Goodwill, M. F. Wendland, K. M. Krishnan, S. Behr, J. Carter, and S. M. Conolly. Magnetic Particle Imaging for Highly Sensitive, Quantitative, and Safe in Vivo Gut Bleed Detection in a Murine Model. ACS Nano, 11(12):12067–12076, 2017.
[5] B. Zheng, M. P. von See, E. Yu, B. Gunel, K. Lu, T. Vazin, D. V. Schaffer, P. W. Goodwill, and S. M. Conolly. Quantitative Magnetic Particle Imaging Monitors the Transplantation, Biodistribution, and Clearance of Stem Cells In Vivo. Theranostics, 6(3):291–301, 2016.
[6] B. Zheng, E. Yu, R. Orendorff, K. Lu, J. J. Konkle, Z. W. Tay, D. Hensley, X. Y. Zhou, P. Chandrasekharan, E. U. Saritas, P. W. Goodwill, J. D. Hazle, and S. M. Conolly. Seeing SPIOs Directly In Vivo with Magnetic Particle Imaging. Mol Imaging Biol, 19(3):385–390, 2017.
[7] X. Y. Zhou, Z. W. Tay, P. Chandrasekharan, E. Y. Yu, D. W. Hensley, R. Orendorff, K. E. Jeffris, D. Mai, B. Zheng, P. W. Goodwill, and S. M. Conolly. Magnetic particle imaging for radiation-free, sensitive and high-contrast vascular imaging and cell tracking. Curr Opin Chem Biol, 45:131–138, 2018.
[8] Z. W. Tay, P. Chandrasekharan, X. Y. Zhou, E. Yu, B. Zheng, and S. Conolly. In vivo tracking and quantification of inhaled aerosol using magnetic particle imaging towards inhaled therapeutic monitoring. Theranostics, 8(13):3676–3687, 2018.
[9] P. Chandrasekharan, Z. W. Tay, D. Hensley, X. Y. Zhou, B. K. Fung, C. Colson, Y. Lu, B. D. Fellows, Q. Huynh, C. Saayujya, E. Yu, R. Orendorff, B. Zheng, P. Goodwill, C. Rinaldi, and S. Conolly. Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: tracers, hardware, and future medical
applications. Theranostics, 10(7):2965–2981, 2020.
[10] W. T. Coffey, Y. P. Kalmykov, and J. T. Waldron, The Langevin Equation, 2nd. WORLD SCIENTIFIC, 2004, doi:10.1142/5343.
[11] P. Chandrasekharan, C. Colson, K. Fung, Q. Huynh, C. Sayyujya, B. Fellows, Y. Lu, Z. W. Tay, and S. Conolly, Monitoring outcome of hyperthermia treatment by measuring relaxation induced blurring with magnetic particle spectroscopy, in 2020 World Molecular Imaging Congress (WMIC 2020).
[12] Z. W. Tay, P. W. Goodwill, D. W. Hensley, L. A. Taylor, B. Zheng, and S. M. Conolly. A High-Throughput, Arbitrary-Waveform, MPI Spectrometer and Relaxometer for Comprehensive Magnetic Particle Optimization and Characterization. Sci Rep, 6:34180, 2016.