International Journal on Magnetic Particle Imaging IJMPI
Vol. 10 No. 1 Suppl 1 (2024): Int J Mag Part Imag
https://doi.org/10.18416/IJMPI.2024.2403010
Extension of the Kaczmarz algorithm with a deep plug-and-play regularizer
Main Article Content
Copyright (c) 2024 Artyom Tsanda, Paul Jürß, Niklas Hackelberg, Mirco Grosser, Martin Möddel, Tobias Knopp
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
The Kaczmarz algorithm is widely used for image reconstruction in magnetic particle imaging (MPI) because it converges rapidly and often provides good image quality even after a few iterations. It is often combined with Tikhonov regularization to cope with noisy measurements and the ill-posed nature of the imaging problem. In this abstract, we propose to combine the Kaczmarz method with a plug-and-play (PnP) denoiser for regularization, which can provide more specific prior knowledge than handcrafted priors. Using measurement data of a spiral phantom, we show that Kaczmarz-PnP yields excellent image quality, while speeding up the already fast convergence. Since the PnP denoiser is not coupled to the imaging operator, the Kaczmarz-PnP method is very generic and can be used for image reconstruction independently of the measurement sequence and MPI tracer type.