International Journal on Magnetic Particle Imaging IJMPI
Vol. 10 No. 1 Suppl 1 (2024): Int J Mag Part Imag
https://doi.org/10.18416/IJMPI.2024.2403039

Proceedings Articles

Design of a magnetic particle imaging integrated with magnetic hyperthermia by aiming at pediatric cancer treatment

Main Article Content

Thanh-Luu Cao , Seungjun Oh , Tuan-Anh Le , Minh Phu Bui , Muhammad Umar Tahir , Hafiz Ashfaq Ahmad , Jungwon Yoon 

Abstract

Magnetic Particle Imaging (MPI) is an emerging non-invasive medical imaging method capable of determining the concentration and spatial distribution of superparamagnetic iron oxide (SPIO) nanoparticles. Ongoing research is exploring technology to estimate the temperature of particles based on MPI signals. In magnetic hyperthermia treatment, volumetric temperature measurement is crucial for ensuring the safety of healthy tissues. While the efficacy of magnetic hyperthermia and simulation-based methods for estimating temperature and damage is now recognized, no prior studies have reported a human-sized MPI system that integrates hyperthermia and MPI. Such integration could potentially allow for non-invasive treatments. In this paper, we present the design and manufacture of a theranostic platform with the potential for MPI, magnetic hyperthermia and thermometry. The development of such technology could greatly extend the application of MPI in planning magnetic hyperthermia treatments.

Article Details

References

[1] B. Gleich and J. Weizenecker, "Tomographic imaging using the nonlinear response of magnetic particles", Nature, vol. 435, no. 7046, pp. 1214-7, 2005, doi: 10.1038/nature03808.
[2] T. Knopp, N. Gdaniec, and M. Möddel, "Magnetic particle imaging: from proof of principle to preclinical applications," Physics in Medicine & Biology, vol. 62, no. 14, p. R124, 2017, doi: 10.1088/1361-6560/aa6c99.
[3] Chandrasekharan, P., Tay, Z. W., Hensley, D., Zhou, X. Y., Fung, B. K., Colson, C., ... & Conolly, S., "Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: tracers, hardware, and future medical applications," Theranostics, Review vol. 10, no. 7, pp. 2965-2981, 2020, doi: 10.7150/thno.40858.
[4] D. Ortega and Q. Pankhurst, "Magnetic Hyperthermia," vol. 1, pp. 60-88, 2013,
[5] Tay, Z. W., Chandrasekharan, P., Chiu-Lam, A., Hensley, D. W., Dhavalikar, R., Zhou, X. Y., ... & Conolly, S. M. "Magnetic particle imaging-guided heating in vivo using gradient fields for arbitrary localization of magnetic hyperthermia therapy." ACS nano, 12.4, 2018, 3699-3713, doi: 10.1021/acsnano.8b00893
[6] T.-A. Le, Y. Hadadian, and J. Yoon, "A prediction model for magnetic particle imaging–based magnetic hyperthermia applied to a brain tumor model," Computer Methods and Programs in Biomedicine, vol. 235, p. 107546, 2023, doi: doi: 10.1016/j.cmpb.2023.107546.
[7] RAUWERDINK, Adam M.; HANSEN, Eric W.; WEAVER, John B. Nanoparticle temperature estimation in combined ac and dc magnetic fields. Physics in Medicine & Biology, 54.19: L51, 2009, doi: 10.1088/0031-9155/54/19/l01
[8] A. M. Rauwerdink, E. W. Hansen, and J. B. Weaver, "Nanoparticle temperature estimation in combined ac and dc magnetic fields,", Phys Med Biol, vol. 54, no. 19, pp. L51-5, 2009, doi: 10.1088/0031-9155/54/19/l01.
[9] Salamon, J., Dieckhoff, J., Kaul, M. G., Jung, C., Adam, G., Möddel, M., ... & Ittrich, H. Visualization of spatial and temporal temperature distributions with magnetic particle imaging for liver tumor ablation therapy. Scientific Reports, 10.1: 7480., 2020, doi: 10.1038/s41598-020-64280-1
[10] Le, T. A., Bui, M. P., Gadelmowla, K. M., Oh, S., & Yoon, J. , "First Human-scale Magnetic Particle Imaging System with Superconductor.," International Journal on Magnetic Particle Imaging IJMPI 9.1 Suppl 1 2023, doi: 10.18416/IJMPI.2023.2303032
[11] S. Healy, A. F. Bakuzis, P. W. Goodwill, A. Attaluri, J. W. M. Bulte, and R. Ivkov, "Clinical magnetic hyperthermia requires integrated magnetic particle imaging," (in eng), Wiley Interdiscip Rev Nanomed Nanobiotechnol, vol. 14, no. 3, p. e1779, 2022, doi: 10.1002/wnan.1779.
[12] C. Tydings, K. V. Sharma, A. Kim, and P. S. Yarmolenko, "Emerging hyperthermia applications for pediatric oncology," Advanced Drug Delivery Reviews, vol. 163-164, pp. 157-167, 2020, doi: https://doi.org/10.1016/j.addr.2020.10.016.
[13] K. U. I. Feng, L. I. Chen, S.-M. Han, and G.-J. Zhu, "Ratio of waist circumference to chest circumference is inversely associated with lung function in Chinese children and adolescents," Respirology, vol. 17, no. 7, pp. 1114-1118, 2012, doi: 10.1111/j.1440-1843.2012.02219.x.
[14] PIERCE, Jeanne Walsh; WARDLE, Jane. Self?esteem, parental appraisal and body size in children. Journal of Child Psychology and Psychiatry, 34.7: 1125-1136., 1993, doi: 10.1111/j.14697610.1993.tb01778.x
[15] T. A. Le, M. P. Bui, and J. Yoon, "Development of Small Rabbit-scale Three-dimensional Magnetic Particle Imaging System with Amplitude Modulation Based Reconstruction," IEEE Transactions on Industrial Electronics, pp. 1-1, 2022, doi: 10.1109/TIE.2022.3169715.
[16] X. Zhang, T. A. Le, A. K. Hoshiar, and J. Yoon, "A Soft Magnetic Core can Enhance Navigation Performance of Magnetic Nanoparticles in Targeted Drug Delivery," IEEE/ASME Transactions on Mechatronics, vol. 23, no. 4, pp. 1573-1584, 2018, doi: 10.1109/TMECH.2018.2843820.
[17] GOODWILL, Patrick W.; CONOLLY, Steven M. The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation. IEEE transactions on medical imaging, 29.11: 1851-1859, 2010, doi: 10.1109/TMI.2010.2052284.