International Journal on Magnetic Particle Imaging IJMPI
Vol. 11 No. 1 Suppl 1 (2025): Int J Mag Part Imag
https://doi.org/10.18416/IJMPI.2025.2503031

Proceedings Articles

TrainingPhantoms.jl: Simple and Versatile Image Phantom Generation

Main Article Content

Paul Jürß (University Medical Center Hamburg-Eppendorf; Hamburg University of Technology), Christine Droigk (Institute for Signal Processing, University of Lübeck, Lübeck, Germany), Marija Boberg (1) Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; 2) Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany), Tobias Knopp (1) Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; 2) Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany; 3) Fraunhofer Research Institution for Individualized and Cell-based Medical Engineering IMTE, Lübeck, Germany)

Abstract

Large collections of labeled data play a crucial role in supervised machine learning projects. Unfortunately, such datasets are quite rare in the medical domain. In this work, the Julia project TrainingPhantoms.jl is introduced, which provides a simple interface to generate large and diverse collections of randomly generated image phantoms. The proposed phantom generator has been successfully used to train an image quality enhancement network that managed to generalize to unseen experimental out-of-distribution data.

Article Details

References

F. Schrank and V. Schulz. Multi-purpose deep learning framework for MPI based on contrastive learning. IJMPI, 9(1 Suppl 1), 2023.
T. Knopp, P. Szwargulski, F. Griese, and M. Gräser. OpenMPIData: An initiative for freely accessible magnetic particle imaging data. Data in Brief, 28, 2020.
P. Koch, M. Maass, M. Bruhns, C. Droigk, T. J. Parbs, and A. Mertins,Neural network for reconstruction of MPI images, in IWMPI, 2019.
Y. Shang, J. Liu, L. Zhang, X. Wu, P. Zhang, L. Yin, H. Hui, and J. Tian.Deep learning for improving the spatial resolution of magnetic particle imaging. Phys. Med. Biol., 67(12), 2022.
B. Askin, A. Güngör, D. Alptekin Soydan, E. U. Saritas, C. B. Top, and T. Cukur, PP-MPI: A Deep Plug-and-Play Prior for Magnetic Particle Imaging Reconstruction, in MLMIR, 2022.
M. Eulers, C. Droigk, M. Maass, and A. Mertins. Deconvolution of direct reconstructions for MPI using Convolutional Neural Network. IJMPI, 9(1 Suppl 1), 2023.
A. Gungor, E. U. Saritas, and T. Cukur. A deep equilibrium technique for 3D MPI reconstruction. IJMPI, 10(1 Suppl 1), 2024.
T. Knopp, P. Jürß, and M. Grosser. A deep learning approach for automatic image reconstruction in MPI. IJMPI, 9(1 Suppl 1), 2023.
X. Wu, B. He, P. Gao, P. Zhang, Y. Shang, L. Zhang, J. Zhong, J. Jiang, H.
Hui, and J. Tian. PGNet: Projection generative network for sparse-view reconstruction of projection-based magnetic particle imaging. Med. Phys., 50(4), 2023.