International Journal on Magnetic Particle Imaging IJMPI
Vol. 11 No. 1 Suppl 1 (2025): Int J Mag Part Imag
https://doi.org/10.18416/IJMPI.2025.2503031
TrainingPhantoms.jl: Simple and Versatile Image Phantom Generation
Main Article Content
Copyright (c) 2025 Paul Jürß, Christine Droigk, Marija Boberg, Tobias Knopp

This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Large collections of labeled data play a crucial role in supervised machine learning projects. Unfortunately, such datasets are quite rare in the medical domain. In this work, the Julia project TrainingPhantoms.jl is introduced, which provides a simple interface to generate large and diverse collections of randomly generated image phantoms. The proposed phantom generator has been successfully used to train an image quality enhancement network that managed to generalize to unseen experimental out-of-distribution data.
Article Details
References
T. Knopp, P. Szwargulski, F. Griese, and M. Gräser. OpenMPIData: An initiative for freely accessible magnetic particle imaging data. Data in Brief, 28, 2020.
P. Koch, M. Maass, M. Bruhns, C. Droigk, T. J. Parbs, and A. Mertins,Neural network for reconstruction of MPI images, in IWMPI, 2019.
Y. Shang, J. Liu, L. Zhang, X. Wu, P. Zhang, L. Yin, H. Hui, and J. Tian.Deep learning for improving the spatial resolution of magnetic particle imaging. Phys. Med. Biol., 67(12), 2022.
B. Askin, A. Güngör, D. Alptekin Soydan, E. U. Saritas, C. B. Top, and T. Cukur, PP-MPI: A Deep Plug-and-Play Prior for Magnetic Particle Imaging Reconstruction, in MLMIR, 2022.
M. Eulers, C. Droigk, M. Maass, and A. Mertins. Deconvolution of direct reconstructions for MPI using Convolutional Neural Network. IJMPI, 9(1 Suppl 1), 2023.
A. Gungor, E. U. Saritas, and T. Cukur. A deep equilibrium technique for 3D MPI reconstruction. IJMPI, 10(1 Suppl 1), 2024.
T. Knopp, P. Jürß, and M. Grosser. A deep learning approach for automatic image reconstruction in MPI. IJMPI, 9(1 Suppl 1), 2023.
X. Wu, B. He, P. Gao, P. Zhang, Y. Shang, L. Zhang, J. Zhong, J. Jiang, H.
Hui, and J. Tian. PGNet: Projection generative network for sparse-view reconstruction of projection-based magnetic particle imaging. Med. Phys., 50(4), 2023.