International Journal on Magnetic Particle Imaging IJMPI
Vol. 11 No. 1 Suppl 1 (2025): Int J Mag Part Imag
https://doi.org/10.18416/IJMPI.2025.2503025

Proceedings Articles

Spatial encoding with receive coils in MPI

Main Article Content

Egor Kretov (Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE), Jan-Philipp Scheel (1) Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE, Lübeck, Germany 2) Institute of Medical Engineering, University of Lübeck, Lübeck, Germany), Liana Mirzojan (1) Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE, Lübeck, Germany 2) Institute of Medical Engineering, University of Lübeck, Lübeck, Germany), Florian Sevecke (1) Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE, Lübeck, Germany 2) Institute of Medical Engineering, University of Lübeck, Lübeck, Germany), Matthias Graeser (1) Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE, Lübeck, Germany 2) Chair of Measurement Technology, University of Rostock, Rostock, Germany)

Abstract

MPI techniques traditionally use gradient magnetic fields for spatial encoding. Despite their proven efficiency, these methods are power-intensive and technically challenging to implement on a human scale. In this work, we explore the potential for spatial encoding of superparamagnetic nanoparticle distributions using only a drive field and an array of receiving coils with unique spatial sensitivity profiles. We demonstrate the feasibility of this concept using a prototype 1D imaging system extended to 2D by mechanically moving the sample. The proposed approach permits high-speed gradient-free data acquisition for rapid imaging but also has some limitations in terms of penetration depth.

Article Details

References

[1] B. Gleich and J. Weizenecker. Tomographic imaging using the non-linear response of magnetic particles. Nature, 435(7046):1214–1217,
2005, doi:10.1038/nature03808.
[2] J. Weizenecker, B. Gleich, and J. Borgert. Magnetic particle imaging using a field-free line. Journal of Physics D: Applied Physics,
41(10):105009, 2008, doi:10.1088/0022-3727/41/10/105009.
[3] P. Vogel, M. A. Ruckert, P. Klauer, W. H. Kullmann, P. M.
Jakob, and V. C. Behr. Traveling wave magnetic particle imaging. IEEE Transactions on Medical Imaging, 33(2):400–407, 2014,
doi:10.1109/tmi.2013.2285472.
[4] J. Rahmer, C. Stehning, and B. Gleich. Remote magnetic actuation
using a clinical scale system. PLOS ONE, 13(3):e0193546M. Dao,
Ed., 2018, doi:10.1371/journal.pone.0193546.
[5] S. B. Trisnanto, T. Kasajima, T. Shibuya, and Y. Takemura.
Configuring magnetoresistive sensor array for head-sized magnetic particle imaging. International Journal on Magnetic Particle Imaging IJMPI, pp. Vol 9 No 1 Suppl 1 (2023), 2023,
doi:10.18416/IJMPI.2023.2303086.
[6] T. Knopp, T. F. Sattel, S. Biederer, J. Weizenecker, B. Gleich, J. Borgert,
and T. M. Buzug, Receive coil array for magnetic particle imaging, in
2011 IEEE International Symposium on Biomedical Imaging: From
Nano to Macro, 1666–1669, 2011. doi:10.1109/ISBI.2011.5872724.
[7] A. Hajiaghajani and A. Abdolali. Patterning of subwavelength
magnetic fields along a line by means of spatial spectrum: Design and implementation. IEEE Magnetics Letters, 8:1–4, 2017,
doi:10.1109/LMAG.2017.2746065.

Most read articles by the same author(s)

1 2 3 4 5 6 7 > >>