International Journal on Magnetic Particle Imaging IJMPI
Vol. 11 No. 1 Suppl 1 (2025): Int J Mag Part Imag
SMART RHESINs for magnetic particle imaging: impact of viscosity-independent relaxation on image reconstruction
Main Article Content
Copyright (c) 2025 Julia Feye, Jochen Franke, Jens Treptow, Claus Feldmann, Peter W. Roesky, Esther S. Rösch

This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Magnetic particle imaging (MPI) is a promising medical imaging modality that leverages the magnetic properties of nanoparticles. Traditionally, MPI tracers have been limited to commercially available nanoparticles, but specialized tracers could improve signal detection and expand applications. Here, we introduce SMART RHESINs, an innovative tracer design for MPI. In SMART RHESINs, synomag®-D nanoparticles are encapsulated in hollow nanospheres, shielding them from external influences like viscosity changes and enabling signal quantification independent of the surrounding medium. We demonstrated that the phase angle obtained through MPS is a rapid, predictive metric for assessing tracer suitability for MPI applications. Unlike the system matrix from non-encapsulated synomag®-D, the system matrix from aqueous synomag®-D-encapsulated SMART RHESINs allowed reconstructing immobilized SMART RHESINs, underscoring design robustness. SMART RHESINs hold potential for quantitative measurements across diverse environments, broadening the scope of MPS and MPI as a versatile tracer platform for quantitative imaging.
Article Details
References
[2] J. Rahmer, J. Weizenecker, B. Gleich, and J. Borgert. Signal encoding in magnetic particle imaging: properties of the system function. BMC Medical Imaging, 9(1):1-21, 2009, doi: 10.1186/1471-2342-9-4.
[3] H. Paysen, N. Loewa, A. Stach, J. Wells, O. Kosch, S. Twamley, M. R. Makowski, T. Schaeffter, A. Ludwig, and F. Wiekhorst. Cellular uptake of magnetic nanoparticles imaged and quantified by magnetic particle imaging. Scientific Reports, 10(1):1-8, 2020, doi: 10.1038/s41598-020-58853-3.
[4] S. A. Shah, D. B. Reeves, R. M. Ferguson, J. B. Weaver, and K. M. Krishnan. Mixed Brownian alignment and Néel rotations in superparamagnetic iron oxide nanoparticle suspensions driven by an ac field. Physical Review B, 92(9):1-11, 2015, doi: 10.1103/PhysRevB.92.094438.
[5] M. Möddel, C. Meins, J. Dieckhoff, and T. Knopp. Viscosity quantification using multi-contrast magnetic particle imaging. New J. Phys., 20(8):1-14, 2018, doi: 10.1088/1367-2630/aad44b.
[6] D. Eberbeck, F. Wiekhorst, U. Steinhoff, and L. Trahms. Aggregation behaviour of magnetic nanoparticle suspensions investigated by magnetorelaxometry. Journal of Physics: Condensed Matter, 18(38):S2829-S2846, 2006, doi: 10.1088/0953-8984/18/38/S20.
[7] J. Feye, J. Matthias, A. Fischer, D. Rudolph, J. Treptow, R. Popescu, J. Franke, A. L. Exarhos, Z. A. Boekelheide, D. Gerthsen, C. Feldmann, P. W. Roesky, and E. S. Rösch. SMART RHESINs - Superparamagnetic Magnetite Architecture Made of Phenolic Resin Hollow Spheres Coated with Eu(III) Containing Silica Nanoparticles for Future Quantitative Magnetic Particle Imaging Applications. Small, 19(38):1-13, 2023, doi: 10.1002/smll.202301997.